
Citation: | ZHANG Mengqi, WANG Yibo, ZHANG Longguan, DUAN Wenjun, SU Yemao, MO Jiliang, ZHOU Zhongrong. Effects of TBM Cutter Profile on Rock Fragmentation Under Different Rock Type and Confining Pressure Conditions[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 332-339. doi: 10.3969/j.issn.0258-2724.20210171 |
The disc cutters located at the front end of a full-section tunnel boring machine (TBM) play an important role in the rock breaking process. The influence of the cross-sectional profile of the disc cutter on the rock fragmentation is important to study, to improve the TBM tunneling efficiency in engineering practice. Here, a two-dimensional particle flow model for rock cutting is established. Aiming at the flat-tip and circular-tip cutters, which are commonly used in engineering, two kinds of rocks with different strengths are selected, and a fixed confining pressure of 10 MPa is applied to one of the rocks. Then the rock cutting simulation is carried out, and the correlation between the cutter profile shape and the rock fragmentation is studied by analyzing the results of specific energies, rock fragment volumes, cutting forces, and crack numbers. A reduced-scale rock cutting experiment is performed to verify the correctness of the conclusions obtained from the simulations. The simulation results show that the cutter profile has a significant influence on the rock cutting performance. The specific energy of the circular-tip cutter is lower than that of the flat-tip cutter under most rock strengths and confining pressure conditions. The average reduction in the specific energy is 19.8% because the cutting force of the circular-tip cutter is 32.6% lower than that of the flat-top cutter on average. This indicates that the circular-top cutter does less work when tunneling, even though the total volumes of rock fragments created by the two types of cutters are similar (the average difference is 7%). Therefore, the circular-top cutter consumes less energy to break the same volume of rock. In summary, of the two commonly used cutter profiles, the circular-tip cutter is preferred for hard rock and high confining pressure tunneling.
随着我国冷弯技术的快速发展,冷弯薄壁型钢凭借其轻质高强、利用率高的优点,在土木工程中的应用日益广泛[1]. 而冷弯薄壁不等肢卷边角钢由于截面简单、工业化程度高、安装简易,常被应用于可拆式箱式房屋以及冷弯型钢结构房屋中.
Adluri等[2]对铰接细长轴压角钢柱弯曲屈曲进行试验研究,表明由于局部屈曲引起有效截面形心的偏移,导致荷载偏心,引起附加弯矩,承载力计算时需考虑其影响;Dinis等[3]也指出,采用北美规范[4]计算角钢柱承载力,仅需考虑L/
尽管国内外学者对轴心受压冷弯薄壁型角钢进行了大量研究,但针对不等肢卷边角钢受力性能及设计方法的研究仍相对较少,我国现行国家规范《冷弯薄壁型钢结构技术规范》[16]也缺乏对双轴不对称冷弯薄壁截面构件承载力的设计方法. 鉴于此,本文对32根冷弯薄壁不等肢卷边角钢轴压试件的屈曲性能和极限承载力进行试验研究. 基于验证的有限元模型,分析长细比、宽厚比、肢宽比等参数对其屈曲性能和极限承载力的影响. 基于试验和有限元分析结果提出轴心受压冷弯薄壁不等肢卷边角钢构件承载力计算直接强度法的修正公式.
本试验共设计32根冷弯薄壁不等肢卷边角钢试件,试件板材为LQ550镀锌钢板,名义厚度为2 mm,截面形式如图1所示. 图中:b1、b2分别为构件长肢和短肢的宽度,a1、a2为对应卷边的宽度,t为板厚,试件编号形式为LL4030-400-1,其中:LL表示不等肢卷边角钢,40、30分别表示长肢和短肢宽度,400表示角钢长度,1表示相同试件序号. 试件名义几何尺寸和实测尺寸如表1和表2所示.
试件编号 | bl/mm | b2/mm | al/mm | a2/mm | t/mm | b1/t | b2/t |
LL4030 | 40 | 30 | 15 | 15 | 2 | 20 | 15 |
LL6040 | 60 | 40 | 20 | 20 | 2 | 30 | 20 |
LL9060 | 90 | 60 | 20 | 20 | 2 | 45 | 30 |
LL12080 | 120 | 80 | 24 | 24 | 2 | 60 | 40 |
试件编号 | bl/mm | b2/mm | al/mm | a2/mm | t/mm | 长度 L/mm | 长细比 λ |
LL4030-400-1 | 42.13 | 31.43 | 15.97 | 15.54 | 1.98 | 400.00 | 39.19 |
LL4030-400-2 | 41.51 | 31.45 | 15.56 | 16.34 | 1.98 | 399.27 | 39.88 |
LL4030-900-1 | 42.00 | 31.61 | 15.96 | 14.84 | 1.99 | 900.00 | 87.28 |
LL4030-900-2 | 42.25 | 31.05 | 15.14 | 15.79 | 2.00 | 900.00 | 89.45 |
LL4030-1500-1 | 41.98 | 31.48 | 15.99 | 15.28 | 1.97 | 147.14 | |
LL4030-1500-2 | 41.93 | 31.42 | 15.93 | 15.95 | 2.00 | 146.65 | |
LL4030-2100-1 | 42.07 | 31.32 | 15.60 | 15.96 | 1.98 | 206.51 | |
LL4030-2100-2 | 42.20 | 31.59 | 15.52 | 15.66 | 1.98 | 206.93 | |
LL6040-400-1 | 61.68 | 41.48 | 21.63 | 19.48 | 1.98 | 400.00 | 29.54 |
LL6040-400-2 | 61.35 | 41.52 | 21.17 | 21.00 | 1.97 | 399.00 | 29.40 |
LL6040-900-1 | 62.05 | 41.60 | 21.45 | 19.37 | 1.98 | 900.00 | 66.46 |
LL6040-900-2 | 62.16 | 41.63 | 21.54 | 19.61 | 2.09 | 900.00 | 68.25 |
LL6040-1500-1 | 62.10 | 41.64 | 21.06 | 20.48 | 1.99 | 110.40 | |
LL6040-1500-2 | 61.80 | 41.76 | 21.35 | 20.98 | 2.07 | 111.54 | |
LL6040-2100-1 | 62.24 | 41.37 | 21.32 | 19.86 | 1.91 | 152.65 | |
LL6040-2100-2 | 61.44 | 41.91 | 20.92 | 20.47 | 1.98 | 154.12 | |
LL9060-400-1 | 91.80 | 61.41 | 20.25 | 20.02 | 1.97 | 400.00 | 22.15 |
LL9060-400-2 | 91.92 | 61.31 | 20.12 | 20.50 | 1.97 | 399.50 | 22.16 |
LL9060-900-1 | 91.51 | 61.43 | 19.90 | 21.05 | 1.99 | 900.00 | 49.79 |
LL9060-900-2 | 91.90 | 61.89 | 20.67 | 20.19 | 2.00 | 900.00 | 49.39 |
LL9060-1500-1 | 91.50 | 62.59 | 20.51 | 20.88 | 2.00 | 81.56 | |
LL9060-1500-2 | 91.43 | 62.42 | 21.08 | 19.88 | 1.97 | 81.69 | |
LL9060-2100-1 | 92.07 | 61.52 | 20.99 | 19.69 | 1.98 | 115.66 | |
LL9060-2100-2 | 91.60 | 61.94 | 21.83 | 21.01 | 2.00 | 113.94 | |
LL12080-400-1 | 121.53 | 81.77 | 24.92 | 23.98 | 1.98 | 400.00 | 16.95 |
LL12080-400-2 | 121.30 | 81.82 | 24.19 | 24.22 | 1.98 | 399.27 | 17.00 |
LL12080-900-1 | 122.30 | 81.71 | 25.11 | 24.05 | 1.97 | 900.00 | 38.10 |
LL12080-900-2 | 121.87 | 81.95 | 23.68 | 24.90 | 1.97 | 900.00 | 38.23 |
LL12080-1500-1 | 121.97 | 82.20 | 24.71 | 24.17 | 2.00 | 63.34 | |
LL12080-1500-2 | 122.48 | 81.87 | 24.95 | 24.70 | 1.97 | 63.33 | |
LL12080-2100-1 | 122.79 | 81.89 | 23.76 | 24.03 | 1.98 | 89.38 | |
LL12080-2100-2 | 121.04 | 82.24 | 24.71 | 24.49 | 1.97 | 88.61 |
材性试验共设计3个标准试样,所有试样均来自同一母材,根据《金属材料拉伸试验室温试验第1部分:室温试验方法》[17]中的规定方法进行拉伸试验.
3个标准试样材性试验应力-应变曲线如图2所示. 得到屈服强度fy=403.0 MPa,极限强度fu=522.8 MPa,弹性模量E=2.11 × 1011 Pa,断后伸长率δ=31.3%.
试验前采用千分表对所有试件的初始几何缺陷进行量测. 试件纵向初始缺陷量测位置如图3所示. 外凸变形取值为正,内凹变形取值为负,1#、2#、4#、5# 千分表测量试件肢宽边缘10 mm处沿纵向分肢初始局部屈曲缺陷,3# 千分表量测试件整体弯曲初始缺陷. 部分试件沿纵向初始缺陷如图4所示,其他试件初始几何缺陷与其基本一致,并无明显的分布规律. 表3给出所有试件初始几何缺陷测量结果的最大值. 表中:ΔLmax、ΔGmax分别为局部屈曲缺陷与整体屈曲缺陷;Pt、PFE、PD、PMD、PY分别为试件试验极限承载力、试件有限元分析极限承载力、北美规范直接强度法计算极限承载力、修正直接强度法计算极限承载力、文献[18]建议修正公式计算极限承载力;F、L、D、FT分别表示弯曲屈曲、局部屈曲、畸变屈曲和弯扭屈曲. 由表3可知,试件的局部屈曲缺陷值均大于整体屈曲缺陷值,试件的整体初始缺陷均小于L/
试件编号 | 屈曲模式 | ΔLmax/ mm |
ΔGmax/ mm |
Pt/kN | PFE/kN | PD/kN | PMD/kN | PY/kN | Pt/PY | Pt/ PFE | Pt/ PD | Pt/PMD | ||
试验 | 有限元 | 一阶模态 | ||||||||||||
LL4030-400-1 | FT | FT | F | 0.49 | 0.28 | 79.66 | 83.17 | 83.77 | 74.38 | 72.51 | ||||
LL4030-400-2 | FT | FT | F | 0.41 | 0.34 | 79.38 | 82.66 | 83.67 | 73.51 | 73.41 | ||||
LL4030-900-1 | FT | FT | F | 1.30 | 0.83 | 50.68 | 53.93 | 56.47 | 50.71 | 27.68 | ||||
LL4030-900-2 | FT | FT | F | 1.54 | 0.77 | 52.72 | 54.70 | 56.90 | 50.97 | 27.97 | ||||
LL4030-1500-1 | FT | FT | F | 1.30 | 0.38 | 40.70 | 40.93 | 40.36 | 42.15 | 23.01 | ||||
LL4030-1500-2 | FT | FT | F | 1.14 | 0.17 | 40.98 | 41.52 | 41.89 | 43.75 | 23.88 | ||||
LL4030-2100-1 | FT | FT | F | 1.84 | 0.08 | 30.52 | 31.19 | 24.48 | 25.57 | 13.96 | ||||
LL4030-2100-2 | FT | FT | F | 1.10 | 0.09 | 29.26 | 31.35 | 24.50 | 25.59 | 13.97 | ||||
LL6040-400-1 | L | L | L | 0.67 | 0.46 | 103.70 | 105.82 | 102.94 | 95.81 | 119.12 | ||||
LL6040-400-2 | L | L | L | 0.75 | 0.31 | 102.46 | 105.26 | 105.33 | 96.41 | 121.73 | ||||
LL6040-900-1 | FT | FT | F | 1.08 | 0.63 | 83.69 | 85.39 | 94.17 | 76.27 | 52.34 | ||||
LL6040-900-2 | FT | FT | F | 1.17 | 0.74 | 83.62 | 84.70 | 98.45 | 80.28 | 54.25 | ||||
LL6040-1500-1 | FT | FT | F | 1.15 | 0.60 | 59.96 | 61.98 | 74.21 | 61.37 | 42.31 | ||||
LL6040-1500-2 | FT | FT | F | 1.42 | 0.43 | 60.82 | 63.31 | 78.23 | 64.30 | 44.60 | ||||
LL6040-2100-1 | FT | FT | F | 1.17 | 0.24 | 48.66 | 50.69 | 41.59 | 43.44 | 23.71 | ||||
LL6040-2100-2 | FT | FT | F | 1.42 | 1.08 | 49.94 | 50.96 | 42.99 | 44.90 | 24.51 | ||||
LL9060-400-1 | L | L | L | 0.99 | 0.35 | 126.76 | 129.35 | 104.56 | 124.03 | 153.51 | ||||
LL9060-400-2 | L | L | L | 0.57 | 0.57 | 125.71 | 129.60 | 106.03 | 124.39 | 155.32 | ||||
LL9060-900-1 | FT + L | FT + L | L | 1.12 | 0.71 | 94.42 | 96.00 | 108.68 | 101.84 | 68.10 | ||||
LL9060-900-2 | FT + L | FT + L | L | 1.02 | 0.92 | 95.60 | 97.20 | 107.99 | 102.07 | 67.07 | ||||
LL9060-1500-1 | FT + L | FT + L | L | 0.79 | 0.71 | 77.34 | 80.36 | 90.86 | 94.90 | 51.80 | ||||
LL9060-1500-2 | FT + L | FT + L | L | 0.88 | 0.83 | 77.04 | 78.87 | 85.54 | 89.34 | 48.77 | ||||
LL9060-2100-1 | D | D | F | 1.22 | 0.90 | 59.95 | 61.37 | 48.74 | 50.90 | 27.79 | ||||
LL9060-2100-2 | D | D | F | 1.08 | 0.77 | 61.51 | 63.42 | 54.77 | 57.20 | 31.22 | ||||
LL12080-400-1 | L | L | L | 0.59 | 0.22 | 147.54 | 150.67 | 117.71 | 146.76 | 224.28 | ||||
LL12080-400-2 | L | L | L | 0.58 | 0.14 | 146.78 | 150.41 | 117.29 | 146.49 | 223.06 | ||||
LL12080-900-1 | FT + L | FT + L | L | 1.20 | 0.56 | 136.59 | 138.37 | 117.55 | 118.57 | 105.70 | ||||
LL12080-900-2 | FT + L | FT + L | L | 1.52 | 1.11 | 131.36 | 138.86 | 118.35 | 118.60 | 106.10 | ||||
LL12080-1500-1 | FT + L | FT + L | L | 1.20 | 1.56 | 97.14 | 98.99 | 116.57 | 104.35 | 81.31 | ||||
LL12080-1500-2 | FT + L | FT + L | L | 1.52 | 1.11 | 98.56 | 98.19 | 116.67 | 102.58 | 83.41 | ||||
LL12080-2100-1 | FT + L | FT + L | L | 1.44 | 1.42 | 85.43 | 85.91 | 73.43 | 76.89 | 41.97 | ||||
LL12080-2100-2 | FT + L | FT + L | L | 1.45 | 1.54 | 85.82 | 86.48 | 76.31 | 80.96 | 44.19 | ||||
均值 | ||||||||||||||
方差 | ||||||||||||||
变异系数 |
试验采用自平衡反力系统施加竖向荷载,YJ16静态应变位移采集系统采集数据. 加载端板和底板设10 mm深凹槽,试件插入凹槽后采用垫片将凹槽缝隙填满嵌实以保证试件端部固结. 试验加载装置如图5所示. 采用分级加载的加载方式,每级加载后暂停1 min;当试件发生屈曲或承载力开始下降时,加载速率减半;当试件承载力下降至极限承载力的75%或完全破坏,结束加载. 试件位移计布置如图6所示,D1、D2、D3、D4 4个位移计分别布置在试件中截面处,以量测试件跨中的扭转变形,在试件加载端端部布置位移计D5测量竖向位移.
长度为400 mm的不等肢角钢柱屈曲模式如图7所示. 试件在加载初期变形不明显,随着荷载逐渐增大,b2/t=15的试件分肢出现扭转变形且伴有弯曲,达到破坏荷载时长肢扭转变形明显,构件最终表现为弯扭屈曲模式(图7(a)). b2/t=20,30,40的试件出现了明显的局部屈曲,最终表现为塑性折曲破坏(图7(b)).
长度为900、
长度为
由所有试件屈曲模式可知:轴压冷弯薄壁不等肢卷边角钢屈曲模式主要有弯扭屈曲、局部屈曲以及弯扭和局部相关屈曲,个别试件发生了畸变屈曲. 分析发现,长细比大且宽厚比小的试件易发生弯扭屈曲,长细比小且宽厚比大的易发生局部屈曲或者弯扭和局部相关屈曲.
由表3可知,相同试件重复试验的结果非常相近,表明试验结果是可靠的. 相同截面试件的极限承载力随着试件长细比的增加而降低. 相同长度不同截面的试件荷载-位移曲线对比如图10所示:各试件在加载初期处于弹性阶段,荷载变形曲线成线性关系,刚度基本不变,轴向位移随荷载增大而明显增大;试件屈曲后,荷载变形曲线表现为非线性;达到极限荷载后,承载力缓慢降低.
采用ABAQUS有限元软件S4R壳单元和理想弹塑性模型对试件进行数值模拟建模,有限元模型的几何参数及材料特性采用实测值,不考虑残余应力的影响. 建立有限元模型如图11所示,试件上、下端分别耦合于形心RP-1、RP-2位置,上端约束x、y、z方向的平动自由度(Dx、Dy、Dz)以及x、y、z方向的转动自由度(Rx、Ry、Rz),下端约束所有自由度. 有限元分析首先通过弹性特征值屈曲分析获取试件可能出现的第一阶屈曲模态,作为非线性分析的初始几何缺陷形状,图12是试件LL12080-1500-1的一阶弹性屈曲模态,初始缺陷最大值取表3中实测最大值,采用Von-Mises屈服准则,弧长法求解.
通过ABAQUS有限元软件分析得到所有试件的屈曲模式和极限承载力(表3). 代表性试件的屈曲模式以及荷载-位移曲线对比分别如图13和图14所示. 由表3可知,试件有限元分析屈曲模式与试验结果一致,试验承载力与有限元分析结果比值的平均值和变异系数分别为0.974和
选取不同截面不等肢卷边角钢分析长细比、宽厚比、肢宽比对其承载力的影响. λ=10,20,40,60,80,100,130,160,200;b2/t=20,30,45,60;b2/b1=0.5,0.6,0.7,0.8,0.9,1.0,共216根角钢构件. 得到不同截面和长细比的不等肢卷边角钢极限承载力. 角钢承载力NFE/Ns与长细比之间的关系如图15所示,其中:NFF为有限元分析承载力,Ns为截面屈服承载力. 由图15可知,不等肢卷边角钢极限承载力随构件长细比的增加而降低,当λ<40时影响稍大,长细比对构件极限承载力的影响随构件宽厚比的增大而减弱.
北美规范采用直接强度法计算轴心受压冷弯薄壁不等肢卷边角钢构件稳定承载力PD,PD取整体屈曲极限承载力Pne (式(1) )、局部和整体相关屈曲极限承载力Pnl (式(2) )的最小值.
Pne={0.658λ2cPy,λc⩽1.5,0.877λ2cPy,λc>1.5, | (1) |
Pnl={Pne,λl⩽0.776,[1−0.15(PcrlPne)0.4](PcrlPne)0.4Pne,λl>0.776, | (2) |
F3cre(r20−x30−y30)−F2cre[r20(σex+σey+σt)−(σeyx20+σexy20)]+Fcrer20(σexσey+σeyσt+σexσt)−(σexσeyσtr20)=0, | (3) |
式中:Py为构件屈服承载力,Py=AgFy,Fy为材料屈服强度,Ag为试件的毛截面面积;λc=√Py/Pcre,Pcre为试件弹性整体屈曲临界力,如式(3);λl=√Pne/Pcrl,Pcrl=AgFcrl,为试件弹性局部屈曲临界力,Fcrl为试件弹性局部屈曲临界应力;x0和y0分别为沿x主轴和y主轴从剪心到形心的距离;σex和σey分别为围绕x轴和y轴弹性弯曲屈曲临界应力;r0为弹性扭转屈曲临界应力;σt为r0的回转半径.
Young考虑角钢构件的整体屈曲后强度,提出建议式:
Pne={0.5λ2cpy,λc⩽1.5,0.5λ2cpy,λc>1.5. | (4) |
按照北美规范[4]中直接强度法(式(1)~(3))以及Young[5]建议修正式(式(4))计算试件稳定承载力PD和PY,如表3所示. 试件试验极限承载力Pt与北美规范[4]直接强度法计算稳定承载力PD结果之比的均值和变异系数分别为
Pmne={0.761λ2cPy,λc⩽1.174,0.916λ2cPy,λc>1.174, | (5) |
Pmnl={Pne,λ1⩽0.626,[1−0.191(PcrlPne)0.4](PcrlPne)0.4Pne,λ1>0.626, | (6) |
式中:Pmne、Pmnl分别为整体屈曲极限承载力和局部和整体相关屈曲极限承载力.
采用修正式(5)、(6)计算得到轴心受压冷弯薄壁不等肢卷边角钢构件稳定承载力PMD,如表3所示,其中,PMD为修正式(5)计算的Pmne和修正计算(式(6))的Pmnl的最小值. 试件试验极限承载力Pt与修正直接强度法PMD计算结果之比的均值和变异系数分别为
采用建议的直接强度法(式(5)、 (6))对试验试件、有限元分析构件进行稳定承载力计算,得到采用建议公式计算试验试件以及有限元分析构件的承载力与其之比的均值(变异系数)分别为
类型 | ρ2 | 组合形式 | ρ1=0.5 | ρ1=1.0 | ρ1=2.0 | ρ1=3.0 | 可靠指标平均值 |
办公楼 | 0 | 1.3G + 1.5L1 | 4.518 | 4.467 | 4.442 | 4.403 | 4.457 |
0.5 | 1.3G + 0.9 × 1.5 (L1 + W) | 4.306 | 4.298 | 4.253 | 4.198 | 4.264 | |
1.0 | 1.3G + 0.9 × 1.5 (L1 + W) | 4.178 | 4.161 | 4.102 | 4.087 | 4.132 | |
2.0 | 1.3G + 0.9 × 1.5 (L1 + W) | 4.096 | 4.011 | 3.918 | 3.824 | 3.962 | |
3.0 | 1.3G + 0.9 × 1.5 (L1 + W) | 3.954 | 3.898 | 3.837 | 3.763 | 3.863 | |
4.0 | 1.3G + 0.9 × 1.5 (L1 + W) | 3.781 | 3.675 | 3.621 | 3.601 | 3.670 | |
住宅 | 0 | 1.3G + 1.5L2 | 4.924 | 4.869 | 4.841 | 4.799 | 4.858 |
0.5 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.693 | 4.684 | 4.635 | 4.575 | 4.647 | |
1.0 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.554 | 4.535 | 4.471 | 4.454 | 4.503 | |
2.0 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.464 | 4.372 | 4.270 | 4.168 | 4.318 | |
3.0 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.309 | 4.248 | 4.182 | 4.101 | 4.210 | |
4.0 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.121 | 4.005 | 3.947 | 3.925 | 3.999 | |
注:ρ1 为活荷载标准值与风荷载标准值之和与恒荷载标准值的比值,ρ2 为风荷载标准值与活荷载标准值的比值. |
本文通过对轴心受压冷弯薄壁不等肢卷边角钢进行屈曲承载力试验和有限元分析,得到如下结论:
1) 长细比较大和宽厚比较小的试件易发生弯扭屈曲,长细比较小和宽厚比较大的试件易发生弯扭和局部相关屈曲. 相同长度试件的极限承载力随着宽厚比的增加而提高;相同截面试件的极限承载力随着试件长度的增加而大幅下降;宽厚比越大,构件长度对构件极限承载力的影响越小.
2) 有限元分析结果与试验结果对比表明,建立的ABAQUS有限元分析模型对分析冷弯薄壁不等肢卷边角钢轴压柱屈曲性能是有效的.
3) 有限元参数分析表明,长细比是影响构件极限承载力和屈曲模式的主要因素. 通过增大构件宽厚比和构件肢宽比可提高构件的极限承载力.
4) 北美规范直接强度法建议方法偏保守,基于试验和有限元分析提出的修正直接强度法具有较好的准确性和可靠度.
[1] |
王梦恕. 中国盾构和掘进机隧道技术现状, 存在的问题及发展思路[J]. 隧道建设,2014,34(3): 179-187.
WANG Mengshu. Tunneling by TBM/shield in China: state-of-art, problems and proposals[J]. Tunnel Construction, 2014, 34(3): 179-187.
|
[2] |
LABRA C, ROJEK J, OÑATE E. Discrete/finite element modelling of rock cutting with a TBM disc cutter[J]. Rock Mechanics and Rock Engineering, 2017, 50(3): 621-638. doi: 10.1007/s00603-016-1133-7
|
[3] |
CHEN L H, LABUZ J F. Indentation of rock by wedge-shaped tools[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7): 1023-1033. doi: 10.1016/j.ijrmms.2006.03.005
|
[4] |
MA H S, YIN L J, JI H G. Numerical study of the effect of confining stress on rock fragmentation by TBM cutters[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 1021-1033. doi: 10.1016/j.ijrmms.2011.05.002
|
[5] |
LIU J, CAO P, LI K H. A study on isotropic rock breaking with TBM cutters under different confining stresses[J]. Geotechnical and Geological Engineering, 2015, 33(6): 1379-1394. doi: 10.1007/s10706-015-9907-3
|
[6] |
WU Z J, ZHANG P L, FAN L F, et al. Numerical study of the effect of confining pressure on the rock breakage efficiency and fragment size distribution of a TBM cutter using a coupled FEM-DEM method[J]. Tunnelling and Underground Space Technology, 2019, 88: 260-275. doi: 10.1016/j.tust.2019.03.012
|
[7] |
GONG Q M, ZHAO J, JIAO Y Y. Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters[J]. Tunnelling and Underground Space Technology, 2005, 20(2): 183-191. doi: 10.1016/j.tust.2004.08.006
|
[8] |
BEJARI H, KHADEMI HAMIDI J. Simultaneous effects of joint spacing and orientation on TBM cutting efficiency in jointed rock masses[J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 897-907. doi: 10.1007/s00603-012-0314-2
|
[9] |
马洪素,纪洪广. 节理倾向对TBM滚刀破岩模式及掘进速率影响的试验研究[J]. 岩石力学与工程学报,2011,30(1): 155-163.
MA Hongsu, JI Hongguang. Experimental study of the effect of joint orientation on fragmentation modes and penetration rate under tbm disc cutters[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 155-163.
|
[10] |
苏利军,孙金山,卢文波. 基于颗粒流模型的TBM滚刀破岩过程数值模拟研究[J]. 岩土力学,2009,30(9): 2823-2829. doi: 10.3969/j.issn.1000-7598.2009.09.049
SU Lijun, SUN Jinshan, LU Wenbo. Research on numerical simulation of rock fragmentation by TBM cutters using particle flow method[J]. Rock and Soil Mechanics, 2009, 30(9): 2823-2829. doi: 10.3969/j.issn.1000-7598.2009.09.049
|
[11] |
夏毅敏,张旭辉,谭青,等. 不同围压下刀宽对滚刀破岩特性的影响规律[J]. 应用基础与工程科学学报,2017,25(3): 636-645. doi: 10.16058/j.issn.1005-0930.2017.03.019
XIA Yimin, ZHANG Xuhui, TAN Qing, et al. Influence of rock breaking characteristics with disc cutter width under different confining pressure[J]. Journal of Basic Science and Engineering, 2017, 25(3): 636-645. doi: 10.16058/j.issn.1005-0930.2017.03.019
|
[12] |
COOK N G W, HOOD M, TSAI F. Observations of crack growth in hard rock loaded by an indenter[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(2): 97-107.
|
[13] |
CHANG S H, CHOI S W, BAE G J, et al. Performance prediction of TBM disc cutting on granitic rock by the linear cutting test[J]. Tunnelling and Underground Space Technology, 2006, 21(3/4): 271.
|
[14] |
龚秋明,何冠文,赵晓豹,等. 掘进机刀盘滚刀间距对北山花岗岩破岩效率的影响实验研究[J]. 岩土工程学报,2015,37(1): 54-60. doi: 10.11779/CJGE201501005
GONG Qiuming, HE Guanwen, ZHAO Xiaobao, et al. Influence of different cutter spacings on rock fragmentation efficiency of Beishan granite by TBM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 54-60. doi: 10.11779/CJGE201501005
|
[15] |
张魁,夏毅敏,徐孜军. 不同围压及切削顺序对TBM刀具破岩机理的影响[J]. 土木工程学报,2011,44(9): 100-106. doi: 10.15951/j.tmgcxb.2011.09.008
ZHANG Kui, XIA Yimin, XU Zijun. Effects of confining pressure and cutting sequence on the rock-breaking mechanism by TBM cutter[J]. China Civil Engineering Journal, 2011, 44(9): 100-106. doi: 10.15951/j.tmgcxb.2011.09.008
|
[16] |
谭青,徐孜军,夏毅敏,等. 2种切削顺序下TBM刀具破岩机理的数值研究[J]. 中南大学学报(自然科学版),2012,43(3): 940-946.
TAN Qing, XU Zijun, XIA Yimin, et al. Numerical study on mode of breaking rock by TBM cutter in two cutting orders[J]. Journal of Central South University (Science and Technology), 2012, 43(3): 940-946.
|
[17] |
ROXBOROUGH F F, PHILLIPS H R. Rock excavation by disc cutter[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1975, 12(12): 361-366.
|
[18] |
JOHNSON K L. Contact mechanics[M]. United Kingdom: Cambridge University Press, 1985: 90-104.
|
[19] |
崔伟勤,赵自强,张耀光,等. 牵引模式下球环点接触高速弹流润滑行为机理分析[J]. 摩擦学学报,2018,38(6): 619-625. doi: 10.16078/j.tribology.2018055
CUI Weiqin, ZHAO Ziqiang, ZHANG Yaoguang, et al. Analysis for mechanism of EHL behavior at high speeds in ball-on-ring contacts in tractive rolling mode[J]. Tribology, 2018, 38(6): 619-625. doi: 10.16078/j.tribology.2018055
|
[20] |
许迪初,汪久根. 粗糙表面的弹塑性接触研究[J]. 摩擦学学报,2016,36(3): 371-379. doi: 10.16078/j.tribology.2016.03.015
XU Dichu, WANG Jiugen. On deterministic elastoplastic contact for rough surfaces[J]. Tribology, 2016, 36(3): 371-379. doi: 10.16078/j.tribology.2016.03.015
|
[21] |
POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
|
[22] |
MOON T, OH J. A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 837-849.
|
[23] |
ZHANG Z Q, ZHANG K J, DONG W J, et al. Study of rock-cutting process by disc cutters in mixed ground based on three-dimensional particle flow model[J]. Rock Mechanics and Rock Engineering, 2020, 53(8): 3485-3506. doi: 10.1007/s00603-020-02118-y
|
[24] |
彭琦. 围压对TBM滚刀破岩影响机制研究[J]. 岩石力学与工程学报,2014,33(增1): 2743-2749. doi: 10.13722/j.cnki.jrme.2014.s1.022
PENG Qi. Research on influence mechanism of confining pressure on rock breakage by tbm cutters[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2743-2749. doi: 10.13722/j.cnki.jrme.2014.s1.022
|
[25] |
谭青,易念恩,夏毅敏,等. TBM滚刀破岩动态特性与最优刀间距研究[J]. 岩石力学与工程学报,2012,31(12): 2453-2464. doi: 10.3969/j.issn.1000-6915.2012.12.009
TAN Qing, YI Nianen, XIA Yimin, et al. Research on rock dynamic fragmentation characteristics by tbm cutters and cutter spacing optimization[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2453-2464. doi: 10.3969/j.issn.1000-6915.2012.12.009
|
[26] |
INNAURATO N, OGGERI C, ORESTE P P, et al. Experimental and numerical studies on rock breaking with TBM tools under high stress confinement[J]. Rock Mechanics and Rock Engineering, 2006, 40(5): 429-451.
|
[27] |
李刚,朱立达,杨建宇,等. 基于CSM模型的TBM滚刀的计算力学模型与求解[J]. 矿山机械,2012,40(4): 8-11. doi: 10.16816/j.cnki.ksjx.2012.04.003
LI Gang, ZHU Lida, YANG Jianyu, et al. Computational mechanics model for TBM cutters and solution based on CSM model[J]. Mining & Processing Equipment, 2012, 40(4): 8-11. doi: 10.16816/j.cnki.ksjx.2012.04.003
|
试件编号 | bl/mm | b2/mm | al/mm | a2/mm | t/mm | b1/t | b2/t |
LL4030 | 40 | 30 | 15 | 15 | 2 | 20 | 15 |
LL6040 | 60 | 40 | 20 | 20 | 2 | 30 | 20 |
LL9060 | 90 | 60 | 20 | 20 | 2 | 45 | 30 |
LL12080 | 120 | 80 | 24 | 24 | 2 | 60 | 40 |
试件编号 | bl/mm | b2/mm | al/mm | a2/mm | t/mm | 长度 L/mm | 长细比 λ |
LL4030-400-1 | 42.13 | 31.43 | 15.97 | 15.54 | 1.98 | 400.00 | 39.19 |
LL4030-400-2 | 41.51 | 31.45 | 15.56 | 16.34 | 1.98 | 399.27 | 39.88 |
LL4030-900-1 | 42.00 | 31.61 | 15.96 | 14.84 | 1.99 | 900.00 | 87.28 |
LL4030-900-2 | 42.25 | 31.05 | 15.14 | 15.79 | 2.00 | 900.00 | 89.45 |
LL4030-1500-1 | 41.98 | 31.48 | 15.99 | 15.28 | 1.97 | 147.14 | |
LL4030-1500-2 | 41.93 | 31.42 | 15.93 | 15.95 | 2.00 | 146.65 | |
LL4030-2100-1 | 42.07 | 31.32 | 15.60 | 15.96 | 1.98 | 206.51 | |
LL4030-2100-2 | 42.20 | 31.59 | 15.52 | 15.66 | 1.98 | 206.93 | |
LL6040-400-1 | 61.68 | 41.48 | 21.63 | 19.48 | 1.98 | 400.00 | 29.54 |
LL6040-400-2 | 61.35 | 41.52 | 21.17 | 21.00 | 1.97 | 399.00 | 29.40 |
LL6040-900-1 | 62.05 | 41.60 | 21.45 | 19.37 | 1.98 | 900.00 | 66.46 |
LL6040-900-2 | 62.16 | 41.63 | 21.54 | 19.61 | 2.09 | 900.00 | 68.25 |
LL6040-1500-1 | 62.10 | 41.64 | 21.06 | 20.48 | 1.99 | 110.40 | |
LL6040-1500-2 | 61.80 | 41.76 | 21.35 | 20.98 | 2.07 | 111.54 | |
LL6040-2100-1 | 62.24 | 41.37 | 21.32 | 19.86 | 1.91 | 152.65 | |
LL6040-2100-2 | 61.44 | 41.91 | 20.92 | 20.47 | 1.98 | 154.12 | |
LL9060-400-1 | 91.80 | 61.41 | 20.25 | 20.02 | 1.97 | 400.00 | 22.15 |
LL9060-400-2 | 91.92 | 61.31 | 20.12 | 20.50 | 1.97 | 399.50 | 22.16 |
LL9060-900-1 | 91.51 | 61.43 | 19.90 | 21.05 | 1.99 | 900.00 | 49.79 |
LL9060-900-2 | 91.90 | 61.89 | 20.67 | 20.19 | 2.00 | 900.00 | 49.39 |
LL9060-1500-1 | 91.50 | 62.59 | 20.51 | 20.88 | 2.00 | 81.56 | |
LL9060-1500-2 | 91.43 | 62.42 | 21.08 | 19.88 | 1.97 | 81.69 | |
LL9060-2100-1 | 92.07 | 61.52 | 20.99 | 19.69 | 1.98 | 115.66 | |
LL9060-2100-2 | 91.60 | 61.94 | 21.83 | 21.01 | 2.00 | 113.94 | |
LL12080-400-1 | 121.53 | 81.77 | 24.92 | 23.98 | 1.98 | 400.00 | 16.95 |
LL12080-400-2 | 121.30 | 81.82 | 24.19 | 24.22 | 1.98 | 399.27 | 17.00 |
LL12080-900-1 | 122.30 | 81.71 | 25.11 | 24.05 | 1.97 | 900.00 | 38.10 |
LL12080-900-2 | 121.87 | 81.95 | 23.68 | 24.90 | 1.97 | 900.00 | 38.23 |
LL12080-1500-1 | 121.97 | 82.20 | 24.71 | 24.17 | 2.00 | 63.34 | |
LL12080-1500-2 | 122.48 | 81.87 | 24.95 | 24.70 | 1.97 | 63.33 | |
LL12080-2100-1 | 122.79 | 81.89 | 23.76 | 24.03 | 1.98 | 89.38 | |
LL12080-2100-2 | 121.04 | 82.24 | 24.71 | 24.49 | 1.97 | 88.61 |
试件编号 | 屈曲模式 | ΔLmax/ mm |
ΔGmax/ mm |
Pt/kN | PFE/kN | PD/kN | PMD/kN | PY/kN | Pt/PY | Pt/ PFE | Pt/ PD | Pt/PMD | ||
试验 | 有限元 | 一阶模态 | ||||||||||||
LL4030-400-1 | FT | FT | F | 0.49 | 0.28 | 79.66 | 83.17 | 83.77 | 74.38 | 72.51 | ||||
LL4030-400-2 | FT | FT | F | 0.41 | 0.34 | 79.38 | 82.66 | 83.67 | 73.51 | 73.41 | ||||
LL4030-900-1 | FT | FT | F | 1.30 | 0.83 | 50.68 | 53.93 | 56.47 | 50.71 | 27.68 | ||||
LL4030-900-2 | FT | FT | F | 1.54 | 0.77 | 52.72 | 54.70 | 56.90 | 50.97 | 27.97 | ||||
LL4030-1500-1 | FT | FT | F | 1.30 | 0.38 | 40.70 | 40.93 | 40.36 | 42.15 | 23.01 | ||||
LL4030-1500-2 | FT | FT | F | 1.14 | 0.17 | 40.98 | 41.52 | 41.89 | 43.75 | 23.88 | ||||
LL4030-2100-1 | FT | FT | F | 1.84 | 0.08 | 30.52 | 31.19 | 24.48 | 25.57 | 13.96 | ||||
LL4030-2100-2 | FT | FT | F | 1.10 | 0.09 | 29.26 | 31.35 | 24.50 | 25.59 | 13.97 | ||||
LL6040-400-1 | L | L | L | 0.67 | 0.46 | 103.70 | 105.82 | 102.94 | 95.81 | 119.12 | ||||
LL6040-400-2 | L | L | L | 0.75 | 0.31 | 102.46 | 105.26 | 105.33 | 96.41 | 121.73 | ||||
LL6040-900-1 | FT | FT | F | 1.08 | 0.63 | 83.69 | 85.39 | 94.17 | 76.27 | 52.34 | ||||
LL6040-900-2 | FT | FT | F | 1.17 | 0.74 | 83.62 | 84.70 | 98.45 | 80.28 | 54.25 | ||||
LL6040-1500-1 | FT | FT | F | 1.15 | 0.60 | 59.96 | 61.98 | 74.21 | 61.37 | 42.31 | ||||
LL6040-1500-2 | FT | FT | F | 1.42 | 0.43 | 60.82 | 63.31 | 78.23 | 64.30 | 44.60 | ||||
LL6040-2100-1 | FT | FT | F | 1.17 | 0.24 | 48.66 | 50.69 | 41.59 | 43.44 | 23.71 | ||||
LL6040-2100-2 | FT | FT | F | 1.42 | 1.08 | 49.94 | 50.96 | 42.99 | 44.90 | 24.51 | ||||
LL9060-400-1 | L | L | L | 0.99 | 0.35 | 126.76 | 129.35 | 104.56 | 124.03 | 153.51 | ||||
LL9060-400-2 | L | L | L | 0.57 | 0.57 | 125.71 | 129.60 | 106.03 | 124.39 | 155.32 | ||||
LL9060-900-1 | FT + L | FT + L | L | 1.12 | 0.71 | 94.42 | 96.00 | 108.68 | 101.84 | 68.10 | ||||
LL9060-900-2 | FT + L | FT + L | L | 1.02 | 0.92 | 95.60 | 97.20 | 107.99 | 102.07 | 67.07 | ||||
LL9060-1500-1 | FT + L | FT + L | L | 0.79 | 0.71 | 77.34 | 80.36 | 90.86 | 94.90 | 51.80 | ||||
LL9060-1500-2 | FT + L | FT + L | L | 0.88 | 0.83 | 77.04 | 78.87 | 85.54 | 89.34 | 48.77 | ||||
LL9060-2100-1 | D | D | F | 1.22 | 0.90 | 59.95 | 61.37 | 48.74 | 50.90 | 27.79 | ||||
LL9060-2100-2 | D | D | F | 1.08 | 0.77 | 61.51 | 63.42 | 54.77 | 57.20 | 31.22 | ||||
LL12080-400-1 | L | L | L | 0.59 | 0.22 | 147.54 | 150.67 | 117.71 | 146.76 | 224.28 | ||||
LL12080-400-2 | L | L | L | 0.58 | 0.14 | 146.78 | 150.41 | 117.29 | 146.49 | 223.06 | ||||
LL12080-900-1 | FT + L | FT + L | L | 1.20 | 0.56 | 136.59 | 138.37 | 117.55 | 118.57 | 105.70 | ||||
LL12080-900-2 | FT + L | FT + L | L | 1.52 | 1.11 | 131.36 | 138.86 | 118.35 | 118.60 | 106.10 | ||||
LL12080-1500-1 | FT + L | FT + L | L | 1.20 | 1.56 | 97.14 | 98.99 | 116.57 | 104.35 | 81.31 | ||||
LL12080-1500-2 | FT + L | FT + L | L | 1.52 | 1.11 | 98.56 | 98.19 | 116.67 | 102.58 | 83.41 | ||||
LL12080-2100-1 | FT + L | FT + L | L | 1.44 | 1.42 | 85.43 | 85.91 | 73.43 | 76.89 | 41.97 | ||||
LL12080-2100-2 | FT + L | FT + L | L | 1.45 | 1.54 | 85.82 | 86.48 | 76.31 | 80.96 | 44.19 | ||||
均值 | ||||||||||||||
方差 | ||||||||||||||
变异系数 |
类型 | ρ2 | 组合形式 | ρ1=0.5 | ρ1=1.0 | ρ1=2.0 | ρ1=3.0 | 可靠指标平均值 |
办公楼 | 0 | 1.3G + 1.5L1 | 4.518 | 4.467 | 4.442 | 4.403 | 4.457 |
0.5 | 1.3G + 0.9 × 1.5 (L1 + W) | 4.306 | 4.298 | 4.253 | 4.198 | 4.264 | |
1.0 | 1.3G + 0.9 × 1.5 (L1 + W) | 4.178 | 4.161 | 4.102 | 4.087 | 4.132 | |
2.0 | 1.3G + 0.9 × 1.5 (L1 + W) | 4.096 | 4.011 | 3.918 | 3.824 | 3.962 | |
3.0 | 1.3G + 0.9 × 1.5 (L1 + W) | 3.954 | 3.898 | 3.837 | 3.763 | 3.863 | |
4.0 | 1.3G + 0.9 × 1.5 (L1 + W) | 3.781 | 3.675 | 3.621 | 3.601 | 3.670 | |
住宅 | 0 | 1.3G + 1.5L2 | 4.924 | 4.869 | 4.841 | 4.799 | 4.858 |
0.5 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.693 | 4.684 | 4.635 | 4.575 | 4.647 | |
1.0 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.554 | 4.535 | 4.471 | 4.454 | 4.503 | |
2.0 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.464 | 4.372 | 4.270 | 4.168 | 4.318 | |
3.0 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.309 | 4.248 | 4.182 | 4.101 | 4.210 | |
4.0 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.121 | 4.005 | 3.947 | 3.925 | 3.999 | |
注:ρ1 为活荷载标准值与风荷载标准值之和与恒荷载标准值的比值,ρ2 为风荷载标准值与活荷载标准值的比值. |
试件编号 | bl/mm | b2/mm | al/mm | a2/mm | t/mm | b1/t | b2/t |
LL4030 | 40 | 30 | 15 | 15 | 2 | 20 | 15 |
LL6040 | 60 | 40 | 20 | 20 | 2 | 30 | 20 |
LL9060 | 90 | 60 | 20 | 20 | 2 | 45 | 30 |
LL12080 | 120 | 80 | 24 | 24 | 2 | 60 | 40 |
试件编号 | bl/mm | b2/mm | al/mm | a2/mm | t/mm | 长度 L/mm | 长细比 λ |
LL4030-400-1 | 42.13 | 31.43 | 15.97 | 15.54 | 1.98 | 400.00 | 39.19 |
LL4030-400-2 | 41.51 | 31.45 | 15.56 | 16.34 | 1.98 | 399.27 | 39.88 |
LL4030-900-1 | 42.00 | 31.61 | 15.96 | 14.84 | 1.99 | 900.00 | 87.28 |
LL4030-900-2 | 42.25 | 31.05 | 15.14 | 15.79 | 2.00 | 900.00 | 89.45 |
LL4030-1500-1 | 41.98 | 31.48 | 15.99 | 15.28 | 1.97 | 147.14 | |
LL4030-1500-2 | 41.93 | 31.42 | 15.93 | 15.95 | 2.00 | 146.65 | |
LL4030-2100-1 | 42.07 | 31.32 | 15.60 | 15.96 | 1.98 | 206.51 | |
LL4030-2100-2 | 42.20 | 31.59 | 15.52 | 15.66 | 1.98 | 206.93 | |
LL6040-400-1 | 61.68 | 41.48 | 21.63 | 19.48 | 1.98 | 400.00 | 29.54 |
LL6040-400-2 | 61.35 | 41.52 | 21.17 | 21.00 | 1.97 | 399.00 | 29.40 |
LL6040-900-1 | 62.05 | 41.60 | 21.45 | 19.37 | 1.98 | 900.00 | 66.46 |
LL6040-900-2 | 62.16 | 41.63 | 21.54 | 19.61 | 2.09 | 900.00 | 68.25 |
LL6040-1500-1 | 62.10 | 41.64 | 21.06 | 20.48 | 1.99 | 110.40 | |
LL6040-1500-2 | 61.80 | 41.76 | 21.35 | 20.98 | 2.07 | 111.54 | |
LL6040-2100-1 | 62.24 | 41.37 | 21.32 | 19.86 | 1.91 | 152.65 | |
LL6040-2100-2 | 61.44 | 41.91 | 20.92 | 20.47 | 1.98 | 154.12 | |
LL9060-400-1 | 91.80 | 61.41 | 20.25 | 20.02 | 1.97 | 400.00 | 22.15 |
LL9060-400-2 | 91.92 | 61.31 | 20.12 | 20.50 | 1.97 | 399.50 | 22.16 |
LL9060-900-1 | 91.51 | 61.43 | 19.90 | 21.05 | 1.99 | 900.00 | 49.79 |
LL9060-900-2 | 91.90 | 61.89 | 20.67 | 20.19 | 2.00 | 900.00 | 49.39 |
LL9060-1500-1 | 91.50 | 62.59 | 20.51 | 20.88 | 2.00 | 81.56 | |
LL9060-1500-2 | 91.43 | 62.42 | 21.08 | 19.88 | 1.97 | 81.69 | |
LL9060-2100-1 | 92.07 | 61.52 | 20.99 | 19.69 | 1.98 | 115.66 | |
LL9060-2100-2 | 91.60 | 61.94 | 21.83 | 21.01 | 2.00 | 113.94 | |
LL12080-400-1 | 121.53 | 81.77 | 24.92 | 23.98 | 1.98 | 400.00 | 16.95 |
LL12080-400-2 | 121.30 | 81.82 | 24.19 | 24.22 | 1.98 | 399.27 | 17.00 |
LL12080-900-1 | 122.30 | 81.71 | 25.11 | 24.05 | 1.97 | 900.00 | 38.10 |
LL12080-900-2 | 121.87 | 81.95 | 23.68 | 24.90 | 1.97 | 900.00 | 38.23 |
LL12080-1500-1 | 121.97 | 82.20 | 24.71 | 24.17 | 2.00 | 63.34 | |
LL12080-1500-2 | 122.48 | 81.87 | 24.95 | 24.70 | 1.97 | 63.33 | |
LL12080-2100-1 | 122.79 | 81.89 | 23.76 | 24.03 | 1.98 | 89.38 | |
LL12080-2100-2 | 121.04 | 82.24 | 24.71 | 24.49 | 1.97 | 88.61 |
试件编号 | 屈曲模式 | ΔLmax/ mm |
ΔGmax/ mm |
Pt/kN | PFE/kN | PD/kN | PMD/kN | PY/kN | Pt/PY | Pt/ PFE | Pt/ PD | Pt/PMD | ||
试验 | 有限元 | 一阶模态 | ||||||||||||
LL4030-400-1 | FT | FT | F | 0.49 | 0.28 | 79.66 | 83.17 | 83.77 | 74.38 | 72.51 | ||||
LL4030-400-2 | FT | FT | F | 0.41 | 0.34 | 79.38 | 82.66 | 83.67 | 73.51 | 73.41 | ||||
LL4030-900-1 | FT | FT | F | 1.30 | 0.83 | 50.68 | 53.93 | 56.47 | 50.71 | 27.68 | ||||
LL4030-900-2 | FT | FT | F | 1.54 | 0.77 | 52.72 | 54.70 | 56.90 | 50.97 | 27.97 | ||||
LL4030-1500-1 | FT | FT | F | 1.30 | 0.38 | 40.70 | 40.93 | 40.36 | 42.15 | 23.01 | ||||
LL4030-1500-2 | FT | FT | F | 1.14 | 0.17 | 40.98 | 41.52 | 41.89 | 43.75 | 23.88 | ||||
LL4030-2100-1 | FT | FT | F | 1.84 | 0.08 | 30.52 | 31.19 | 24.48 | 25.57 | 13.96 | ||||
LL4030-2100-2 | FT | FT | F | 1.10 | 0.09 | 29.26 | 31.35 | 24.50 | 25.59 | 13.97 | ||||
LL6040-400-1 | L | L | L | 0.67 | 0.46 | 103.70 | 105.82 | 102.94 | 95.81 | 119.12 | ||||
LL6040-400-2 | L | L | L | 0.75 | 0.31 | 102.46 | 105.26 | 105.33 | 96.41 | 121.73 | ||||
LL6040-900-1 | FT | FT | F | 1.08 | 0.63 | 83.69 | 85.39 | 94.17 | 76.27 | 52.34 | ||||
LL6040-900-2 | FT | FT | F | 1.17 | 0.74 | 83.62 | 84.70 | 98.45 | 80.28 | 54.25 | ||||
LL6040-1500-1 | FT | FT | F | 1.15 | 0.60 | 59.96 | 61.98 | 74.21 | 61.37 | 42.31 | ||||
LL6040-1500-2 | FT | FT | F | 1.42 | 0.43 | 60.82 | 63.31 | 78.23 | 64.30 | 44.60 | ||||
LL6040-2100-1 | FT | FT | F | 1.17 | 0.24 | 48.66 | 50.69 | 41.59 | 43.44 | 23.71 | ||||
LL6040-2100-2 | FT | FT | F | 1.42 | 1.08 | 49.94 | 50.96 | 42.99 | 44.90 | 24.51 | ||||
LL9060-400-1 | L | L | L | 0.99 | 0.35 | 126.76 | 129.35 | 104.56 | 124.03 | 153.51 | ||||
LL9060-400-2 | L | L | L | 0.57 | 0.57 | 125.71 | 129.60 | 106.03 | 124.39 | 155.32 | ||||
LL9060-900-1 | FT + L | FT + L | L | 1.12 | 0.71 | 94.42 | 96.00 | 108.68 | 101.84 | 68.10 | ||||
LL9060-900-2 | FT + L | FT + L | L | 1.02 | 0.92 | 95.60 | 97.20 | 107.99 | 102.07 | 67.07 | ||||
LL9060-1500-1 | FT + L | FT + L | L | 0.79 | 0.71 | 77.34 | 80.36 | 90.86 | 94.90 | 51.80 | ||||
LL9060-1500-2 | FT + L | FT + L | L | 0.88 | 0.83 | 77.04 | 78.87 | 85.54 | 89.34 | 48.77 | ||||
LL9060-2100-1 | D | D | F | 1.22 | 0.90 | 59.95 | 61.37 | 48.74 | 50.90 | 27.79 | ||||
LL9060-2100-2 | D | D | F | 1.08 | 0.77 | 61.51 | 63.42 | 54.77 | 57.20 | 31.22 | ||||
LL12080-400-1 | L | L | L | 0.59 | 0.22 | 147.54 | 150.67 | 117.71 | 146.76 | 224.28 | ||||
LL12080-400-2 | L | L | L | 0.58 | 0.14 | 146.78 | 150.41 | 117.29 | 146.49 | 223.06 | ||||
LL12080-900-1 | FT + L | FT + L | L | 1.20 | 0.56 | 136.59 | 138.37 | 117.55 | 118.57 | 105.70 | ||||
LL12080-900-2 | FT + L | FT + L | L | 1.52 | 1.11 | 131.36 | 138.86 | 118.35 | 118.60 | 106.10 | ||||
LL12080-1500-1 | FT + L | FT + L | L | 1.20 | 1.56 | 97.14 | 98.99 | 116.57 | 104.35 | 81.31 | ||||
LL12080-1500-2 | FT + L | FT + L | L | 1.52 | 1.11 | 98.56 | 98.19 | 116.67 | 102.58 | 83.41 | ||||
LL12080-2100-1 | FT + L | FT + L | L | 1.44 | 1.42 | 85.43 | 85.91 | 73.43 | 76.89 | 41.97 | ||||
LL12080-2100-2 | FT + L | FT + L | L | 1.45 | 1.54 | 85.82 | 86.48 | 76.31 | 80.96 | 44.19 | ||||
均值 | ||||||||||||||
方差 | ||||||||||||||
变异系数 |
类型 | ρ2 | 组合形式 | ρ1=0.5 | ρ1=1.0 | ρ1=2.0 | ρ1=3.0 | 可靠指标平均值 |
办公楼 | 0 | 1.3G + 1.5L1 | 4.518 | 4.467 | 4.442 | 4.403 | 4.457 |
0.5 | 1.3G + 0.9 × 1.5 (L1 + W) | 4.306 | 4.298 | 4.253 | 4.198 | 4.264 | |
1.0 | 1.3G + 0.9 × 1.5 (L1 + W) | 4.178 | 4.161 | 4.102 | 4.087 | 4.132 | |
2.0 | 1.3G + 0.9 × 1.5 (L1 + W) | 4.096 | 4.011 | 3.918 | 3.824 | 3.962 | |
3.0 | 1.3G + 0.9 × 1.5 (L1 + W) | 3.954 | 3.898 | 3.837 | 3.763 | 3.863 | |
4.0 | 1.3G + 0.9 × 1.5 (L1 + W) | 3.781 | 3.675 | 3.621 | 3.601 | 3.670 | |
住宅 | 0 | 1.3G + 1.5L2 | 4.924 | 4.869 | 4.841 | 4.799 | 4.858 |
0.5 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.693 | 4.684 | 4.635 | 4.575 | 4.647 | |
1.0 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.554 | 4.535 | 4.471 | 4.454 | 4.503 | |
2.0 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.464 | 4.372 | 4.270 | 4.168 | 4.318 | |
3.0 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.309 | 4.248 | 4.182 | 4.101 | 4.210 | |
4.0 | 1.3G + 0.9 × 1.5 (L2 + W) | 4.121 | 4.005 | 3.947 | 3.925 | 3.999 | |
注:ρ1 为活荷载标准值与风荷载标准值之和与恒荷载标准值的比值,ρ2 为风荷载标准值与活荷载标准值的比值. |