• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
SHI Haiou, YUAN Quan, ZHANG Yunlin, ZENG Wenqu, ZHENG Qing, DING Guofu. Multi-Discipline Forward Collaborative Design Technology Based on BIM Interaction and Data-Driven[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 176-181. doi: 10.3969/j.issn.0258-2724.20200035
Citation: HU Lu, LIANG Zhimei, JIANG Yangsheng. Simulation Analysis on Influence of Congestion Propagation on Operation of Carsharing Systems[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 499-510. doi: 10.3969/j.issn.0258-2724.20220231

Simulation Analysis on Influence of Congestion Propagation on Operation of Carsharing Systems

doi: 10.3969/j.issn.0258-2724.20220231
  • Received Date: 31 Mar 2022
  • Rev Recd Date: 31 Aug 2022
  • Available Online: 28 Apr 2023
  • Publish Date: 22 Sep 2022
  • With the increasing penetration of carsharing, vehicle overflow and congestion propagation at the level of station and path tend to be serious. In order to describe the influence mechanism of congestion propagation on the operation of carsharing systems, firstly, a queuing network of the carsharing system is built with time-varying and state-dependence properties. Secondly, based on C# language and O2DES framework of discrete event simulation, a simulation model of the carsharing system under dynamic stochastic environment is proposed, which allows for the influence of vehicle–road interaction and congestion propagation. The influence of congestion propagation on the operation of the carsharing system is analyzed in terms of the station and path levels. Finally, a small-scale carsharing system, i.e., three stations in Chengdu, is exemplified. The proposed model and the infinite queuing model in virtual space are compared and analyzed under different transfer ratios, demands and road congestion scenarios. The results show that congestion propagation at the stations and paths will decline the system service rate by 9.3%–16.9%. Compared with the infinite queuing model, the proposed model can better reflect the actual operation of the carsharing system because of considering congestion propagation. When the occupancy rate of the road network reaches 70% (the road network is in moderate congestion), the proposed carsharing system can achieve maximum benefits. The introduction of the carsharing system will bring new changes to the dynamic allocation of road resources. When the proportion of users from public transportation to the carsharing system exceeds 70%, it will intensify the congestion of the road network, which is not conducive to the effective operation and sustainable development of the carsharing system.

     

  • [1]
    YE J H, WANG D G, LI X, et al. Assessing one-way carsharing’s impacts on vehicle ownership: evidence from Shanghai with an international comparison[J]. Transportation Research Part A: Policy and Practice, 2021, 150: 16-32. doi: 10.1016/j.tra.2021.05.012
    [2]
    张淼,惠英,汪鸣泉. 汽车共享对城市温室气体排放的影响[J]. 中国人口 · 资源与环境,2012,22(9): 48-53. doi: 10.3969/j.issn.1002-2104.2012.09.008

    ZHANG Miao, HUI Ying, WANG Mingquan. Urban greenhouse gas emission of car sharing[J]. China Population, Resources and Environment, 2012, 22(9): 48-53. doi: 10.3969/j.issn.1002-2104.2012.09.008
    [3]
    XU M, MENG Q, LIU ZY. Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment[J]. Transportation Research Part B:Methodological, 2018, 111: 60-82. doi: 10.1016/j.trb.2018.03.001
    [4]
    BAPTISTA P, MELO S, ROLIM C. Car sharing systems as a sustainable transport policy: a case Study from Lisbon, Portugal[M]//ATTARD M, SHIFTAN Y. Transport and Sustainability. [S.l.]: Emerald Group Publishing Limited, 2015: 205-227.
    [5]
    NANSUBUGA B, KOWALKOWSKI C. Carsharing: a systematic literature review and research agenda[J]. Journal of Service Management, 2021, 32(6): 55-91. doi: 10.1108/JOSM-10-2020-0344
    [6]
    曹可心,邓羽. 城市共享汽车分布的时空演变及影响因素研究:以北京市主城区为例[J]. 地理科学,2021,41(10): 1792-1801.

    CAO Kexin, DENG Yu. Spatial-temporal characteristics and impacting factors of carsharing in Beijing[J]. Scientia Geographica Sinica, 2021, 41(10): 1792-1801.
    [7]
    伊二妮. 基于排队论的汽车共享服务系统车辆配置优化研究[D]. 青岛: 山东科技大学, 2018.
    [8]
    EFTHYMIOU D, ANTONIOU C, WADDELL P. Factors affecting the adoption of vehicle sharing systems by young drivers[J]. Transport Policy, 2013, 29: 64-73. doi: 10.1016/j.tranpol.2013.04.009
    [9]
    刘向,洪林,王宁,等. 基于时空消耗的共享汽车拥堵治理效用研究[J]. 汽车工程学报,2020,10(5): 335-341. doi: 10.3969/j.issn.2095-1469.2020.05.04

    LIU Xiang, HONG Lin, WANG Ning, et al. Research on the effect of car-sharing on traffic congestion management based on spatiotemporal consumption[J]. Chinese Journal of Automotive Engineering, 2020, 10(5): 335-341. doi: 10.3969/j.issn.2095-1469.2020.05.04
    [10]
    高永,安健,全宇翔. 网络约租车对出行方式选择及交通运行的影响[J]. 城市交通,2016,14(5): 1-8. doi: 10.13813/j.cn11-5141/u.2016.0501

    GAO Yong, AN Jian, QUAN Yuxiang. The impact of APP-based car sharing on travel mode shift and transportation operation performance[J]. Urban Transport of China, 2016, 14(5): 1-8. doi: 10.13813/j.cn11-5141/u.2016.0501
    [11]
    张三省,苏倩,张俊青. 基于系统动力学的网约车政策对城市交通的影响研究[J]. 天津大学学报(社会科学版),2019,21(6): 494-502.

    ZHANG Sanxing, SU Qian, ZHANG Junqing. Analysis of the influence of ride-hailing policy on urban traffic based on system dynamics[J]. Journal of Tianjin University (Social Sciences), 2019, 21(6): 494-502.
    [12]
    ZHAO M, LI X, YIN J, et al. An integrated framework for electric vehicle rebalancing and staff relocation in one-way carsharing systems: model formulation and Lagrangian relaxation-based solution approach[J]. Transportation Research Part B: Methodological, 2018, 117: 542-572. doi: 10.1016/j.trb.2018.09.014
    [13]
    HU L, LIU Y. Joint design of parking capacities and fleet size for one-way station-based carsharing systems with road congestion constraints[J]. Transportation Research Part B: Methodological, 2016, 93: 268-299. doi: 10.1016/j.trb.2016.07.021
    [14]
    DENG Y H, CARDIN M A. Integrating operational decisions into the planning of one-way vehicle-sharing systems under uncertainty[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 407-424. doi: 10.1016/j.trc.2017.11.018
    [15]
    KASPI M, RAVIV T, TZUR M. Parking reservation policies in one-way vehicle sharing systems[J]. Transportation Research Part B: Methodological, 2014, 62: 35-50. doi: 10.1016/j.trb.2014.01.006
    [16]
    马舒予,胡路,吴佳媛,等. 共享电动汽车系统车队规模与停车泊位数优化[J]. 交通运输工程与信息学报,2022,20(3): 31-42.

    MA Shuyu, HU Lu, WU Jiayuan, et al. Fleet size and parking capacity optimization of electric carsharing system[J]. Journal of Transportation Engineering and Information, 2022, 20(3): 31-42.
    [17]
    蒋阳升,李衍,李皓,等. 基于模块化仿真的共享汽车联合调度优化[J]. 西南交通大学学报,2023,58(1): 74-82. doi: 10.3969/j.issn.0258-2724.20210083

    JIANG Yangsheng, LI Yan, LI Hao, et al. Optimization for joint relocation of carsharing based on modular simulation[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 74-82. doi: 10.3969/j.issn.0258-2724.20210083
    [18]
    PARK S, YU W. Analysis of system parameters for one-way carsharing systems[J]. Transportation Letters: the International Journal of Transportation Research, 2021,14(3): 1-11.
    [19]
    LI H B, ZHU Y C, CHEN Y X, et al. The object-oriented discrete event simulation modeling: a case study on aircraft spare part management[C]//2015 Winter Simulation Conference (WSC). Huntington Beach: IEEE, 2015: 3514-3525.
    [20]
    LI H B, ZHOU C H, LEE B K, et al. Capacity planning for mega container terminals with multi-objective and multi-fidelity simulation optimization[J]. IISE Transactions, 2017, 49(9): 849-862. doi: 10.1080/24725854.2017.1318229
    [21]
    张维戈,陈连福,黄彧,等. M/G/K排队模型在电动出租汽车充电站排队系统中的应用[J]. 电网技术,2015,39(3): 724-729. doi: 10.13335/j.1000-3673.pst.2015.03.021

    ZHANG Weige, CHEN Lianfu, HUANG Yu, et al. Application of M/G/K queuing model in queuing system of electric taxi charging station[J]. Power System Technology, 2015, 39(3): 724-729. doi: 10.13335/j.1000-3673.pst.2015.03.021
    [22]
    李仕鹏. 基于排队论的汽车共享优化设计[D]. 杭州: 杭州电子科技大学, 2013.
    [23]
    KENDALL D G. Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain[J]. The Annals of Mathematical Statistics, 1953, 24(3): 338-354
    [24]
    ZEIGLER B P, PRAEHOFER H, KIM T G. Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems[M]. 2nd edition. Pittsburgh: Academic Press, 2000: 4-5.
    [25]
    HU L, ZHAO B, ZHU J X, et al. Two time-varying and state-dependent fluid queuing models for traffic circulation systems[J]. European Journal of Operational Research, 2019, 275(3): 997-1019. doi: 10.1016/j.ejor.2019.01.020
  • Relative Articles

    [1]MENG Chuncheng, QU Daoyuan, DUAN Xiaochen. Nonlinear Prediction and Inversion of Civil Engineering Cost of Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 137-146. doi: 10.3969/j.issn.0258-2724.20230209
    [2]LIU Wei, DENG Haotian, XU Qian, RAO Xiaoming. Optimal Design of Power Supply Scheme for Sharing Resources in Urban Rail Interchange Stations[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 541-549. doi: 10.3969/j.issn.0258-2724.20230146
    [3]LIU Gehui, JIN Hua, PENG Qiyuan, LIU Ling, RAN Xinchen, LAN Zhen. Crew Rostering Schedule Optimization for Urban Rail Transit Through Resource Sharing[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 731-740. doi: 10.3969/j.issn.0258-2724.20230165
    [4]WANG Biao, QIN Yong, JIA Limin, CHENG Xiaoqing, ZENG Chunping, GAO Yifan. Monitoring Data-Driven Prediction of Remaining Useful Life of Axle-Box Bearings for Urban Rail Transit Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 229-238. doi: 10.3969/j.issn.0258-2724.20220230
    [5]WANG Tao, TAN Ji, LIU Dong, YANG Yejiang. Modeling of State-Dependent Switching System Based on Data-Driven[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 493-500. doi: 10.3969/j.issn.0258-2724.20210579
    [6]WEN Tao, XIA Wentao, ZHOU Xu, LONG Zhiqiang. Data-Driven Parameter Tuning for Maglev Train Levitation System[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 506-513. doi: 10.3969/j.issn.0258-2724.20210792
    [7]LIU Jie, CHEN Jinqu, PENG Qiyuan, YIN Yong. Reliability and Service Quality Evaluation for Urban Rail Transit Network[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 395-402, 450. doi: 10.3969/j.issn.0258-2724.20190938
    [8]LIU Fengbo, ZHOU Tingliang, WANG Xiaomin. Calculation and Evaluation Method of Passenger Flow Distribution under Urban Rail Transit Failure[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 921-927, 966. doi: 10.3969/j.issn.0258-2724.20200602
    [9]NONG Xingzhong, SHI Haiou, YUAN Quan, ZENG Wenqu, ZHENG Qing, DING Guofu. Review on BIM Technology Used in Urban Rail Transit Projects[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 451-460. doi: 10.3969/j.issn.0258-2724.20200018
    [10]ZHANG Xuexia, GAO Yuxuan, CHEN Weirong. Data-Driven Based Remaining Useful Life Prediction for Proton Exchange Membrane Fuel Cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427. doi: 10.3969/j.issn.0258-2724.20180016
    [11]LI Fang, DI Yue, CHEN Shaokuan, JIA Wenzheng. Modelling Passenger Evacuation from Metro Platforms Considering Passenger Flow Guidance and Small Group Behaviour[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 587-594. doi: 10.3969/j.issn.0258-2724.20170668
    [12]ZHOU Ning, ZOU Huan, ZOU Dong, TAN Mengying, ZHANG Weihua. Investigation on the Applicability of Pantograph and Catenary Model Urban Railway System[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 408-415,423. doi: 10.3969/j.issn.0258-2724.2017.02.026
    [13]LU Gongyuan, MA Si, WANG Kun, DENG Nian. Integer Programming Model of Passenger Flow Assignment for Congested Urban Rail lines[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 319-325. doi: 10.3969/j.issn.0258-2724.2017.02.015
    [14]LI Qunzhan. Industrial Frequency Single-Phase AC Traction Power Supply System and Its Key Technologies for Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 199-207. doi: 10.3969/j.issn.0258-2724.2015.02.001
    [15]SHANG Bin, ZHANG Xiaoning. Passenger-Flow Spatial Distribution Model of Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 539-545. doi: 10.3969/j.issn.0258-2724.2013.03.023
    [16]CHENG Jie, PENG Qiyuan, ZHAO Jun. Train Routing Optimization Model for Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2013, 26(6): 1116-1121. doi: 10.3969/j.issn.0258-2724.2013.06.023
    [17]CAI Hai-Ni, WEN Jun-Hao, JI Jie. Performance Optimization of Collaborative Design Network Based on Service-Oriented Architecture[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 603-608. doi: 10. 3969/ j. issn. 0258-2724.
    [18]SHEN Yuanxia, WANG Guoyin. Data-Driven Q-Learning in Dynamic Environment[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 877-881.
    [19]LI Bailin, HE Gang. Architecture of Collaborative Design System[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 80-83.
    [20]LIBai-lin, LUMao-hua. Role-Based Access Control ofCollaborative Design System s[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 330-333.
  • Cited by

    Periodical cited type(2)

    1. 王世鹏,高姗,董现垒. 考虑共享单车接驳的共享汽车站点选址模型构建及应用研究. 经济问题. 2024(06): 108-114 .
    2. 侯博宇,刘洪汛,胡路. 自动驾驶电动共享车系统自适应集中调度优化. 交通运输工程与信息学报. 2024(04): 25-36 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070204060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.6 %FULLTEXT: 24.6 %META: 65.6 %META: 65.6 %PDF: 9.7 %PDF: 9.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.8 %其他: 15.8 %其他: 0.6 %其他: 0.6 %Falls Church: 0.1 %Falls Church: 0.1 %Starkville: 0.2 %Starkville: 0.2 %United States: 0.1 %United States: 0.1 %上海: 0.5 %上海: 0.5 %临汾: 0.2 %临汾: 0.2 %九江: 0.1 %九江: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.4 %兰州: 0.4 %利雅德: 0.1 %利雅德: 0.1 %北京: 5.2 %北京: 5.2 %十堰: 0.1 %十堰: 0.1 %南京: 1.4 %南京: 1.4 %南宁: 0.1 %南宁: 0.1 %南阳: 0.1 %南阳: 0.1 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.2 %哥伦布: 0.2 %商丘: 0.1 %商丘: 0.1 %夏延: 0.1 %夏延: 0.1 %天津: 0.7 %天津: 0.7 %宣城: 0.2 %宣城: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %平凉: 0.2 %平凉: 0.2 %广州: 3.1 %广州: 3.1 %张家口: 5.2 %张家口: 5.2 %悉尼: 0.2 %悉尼: 0.2 %成都: 2.4 %成都: 2.4 %扬州: 0.8 %扬州: 0.8 %揭阳: 0.1 %揭阳: 0.1 %昆明: 0.5 %昆明: 0.5 %晋城: 0.1 %晋城: 0.1 %曼谷: 0.1 %曼谷: 0.1 %杭州: 1.4 %杭州: 1.4 %格兰特县: 0.2 %格兰特县: 0.2 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.8 %洛阳: 0.8 %淮安: 0.2 %淮安: 0.2 %深圳: 0.7 %深圳: 0.7 %漯河: 1.1 %漯河: 1.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 1.4 %石家庄: 1.4 %自贡: 0.1 %自贡: 0.1 %芒廷维尤: 16.5 %芒廷维尤: 16.5 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 28.8 %西宁: 28.8 %西安: 0.2 %西安: 0.2 %诺沃克: 0.5 %诺沃克: 0.5 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.8 %运城: 0.8 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.8 %郑州: 0.8 %重庆: 0.7 %重庆: 0.7 %镇江: 0.2 %镇江: 0.2 %长沙: 3.3 %长沙: 3.3 %雅安: 0.2 %雅安: 0.2 %青岛: 0.6 %青岛: 0.6 %马鞍山: 0.2 %马鞍山: 0.2 %其他其他Falls ChurchStarkvilleUnited States上海临汾九江保定兰州利雅德北京十堰南京南宁南阳合肥呼和浩特哥伦布商丘夏延天津宣城常州常德平凉广州张家口悉尼成都扬州揭阳昆明晋城曼谷杭州格兰特县沈阳洛阳淮安深圳漯河烟台石家庄自贡芒廷维尤芝加哥衢州西宁西安诺沃克贵阳运城邯郸郑州重庆镇江长沙雅安青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(554) PDF downloads(82) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return