• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
TANG Zhihui, CHENG Jie, FANG Zhengnan. Causal Mechanism of Difference between Experienced and Novice Drivers in Hazard Perception Based on Fuzzy Signal Detection Theory[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 532-538. doi: 10.3969/j.issn.0258-2724.2013.03.022
Citation: ZHOU Ning, ZOU Huan, ZOU Dong, TAN Mengying, ZHANG Weihua. Investigation on the Applicability of Pantograph and Catenary Model Urban Railway System[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 408-415,423. doi: 10.3969/j.issn.0258-2724.2017.02.026

Investigation on the Applicability of Pantograph and Catenary Model Urban Railway System

doi: 10.3969/j.issn.0258-2724.2017.02.026
  • Received Date: 30 Dec 2015
  • Publish Date: 25 Apr 2017
  • In order to analyze the applicability of pantographs and catneary models to the urban railway system, the pantograph was modeled as a lumped parameter system with two or three degrees of freedom and a multi-rigid model, while the rigid catenary was simplified as a beam model and a spring model with different stiffnesses. Combining different pantographs and catenary models, the dynamics simulation of the coupled system model was conducted to obtain the dynamic performance of the pantograph-catenary system. The results show that at low speeds, different catenary models with the same pantograph show a little difference in current collection, and the standard deviation of contact force is less than 10 N. With the increase of speed, the difference of models become evident, and the standard deviation of contact force varies beyond 80 N. When the natural frequency and mode shape of pantograph and catenary that match the span-pass frequency exhibit a discrepancy between different models, there appears a critical speed where current collection performance of models changes dramatically. By comparing the simulation and experimental results, it is indicated that the three-lumped-mass model of pantograph is more applicable than the other kinds of models, because it takes into account the elasticity of pantograph upper frame.

     

  • WU T X, BRENNAN M J. Basic analytical study of pantograph-catenary system dynamics[J]. Vehicle System Dynamics, 1998, 30(6): 443-456.
    梅桂明,张卫华. 刚性悬挂接触网动力学研究[J]. 铁道学报,2003,25(2): 24-29. MEI Guiming, ZHANG Weihua. Study on dynamics of rigid suspension catenary[J]. Journal of the China Railway Society, 2003, 25(2): 24-29.
    ZHANG W H, LIU Y, MEI G M. Evaluation of the coupled dynamical response of a pantograph-catenary system contact force and stresses[J]. Vehicle System Dynamics, 2006, 44(8): 645-658.
    刘志刚,宋洋,韩烨,等. 高速铁路接触网研究进展[J]. 西南交通大学学报,2016,51(3): 495-519. LIU Zhigang, SONG Yang, HAN Ye, et al. Advances of research on high-speed railway catenary[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 495-519.
    刘志刚,宋洋,刘煜铖. 电气化高速铁路接触网微风振动特性[J]. 西南交通大学学报,2015,50(1): 1-6. LIU Zhigang, SONG Yang, LIU Yucheng. Aeolian vibration characteristics of electrified high-speed railway catenary[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 1-6.
    李丰良,李敏,唐建湘. 受电弓的建模与参数测试[J]. 中南大学学报:自然科学版,2006,37(1): 194-199. LI Fengliang, LI Min, TANG Jianxiang. Establishment of the pantographs mechanical models and measurement of their parameters[J]. Journal of Central South University: Science and Technology, 2006, 37(1): 194-199.
    周宁,张卫华,王冬. 受电弓等效模型参数识别及动态性能测试[J]. 西南交通大学学报,2011,46(3): 398-403. ZHOU Ning, ZHANG Weihua, WANG Dong. Lumped mass model for dynamic performance simulation of pantograph[J]. Journal of Southwest Jiaotong University, 2011, 46(3): 398-403.
    ZHOU Ning, ZHANG Weihua, LI Ruiping. Dynamic performance of a pantograph-catenary system with the consideration of the appearance characteristics of contact surfaces[J]. Journal of Zhejiang University: Science A: Applied Physics Engineering, 2011, 12(12): 913-920.
    ZHANG Weihua, SHEN Zhiyun, ZENG Jing. Study on dynamics of coupledsystems in high-speed trains[J]. Vehicle System Dynamics: International Journal of Vehicle MechanicsandMobility, 2013, 51(7): 966-1016.
    ZHOU N, ZHANGW H. Investigation on dynamic performance and parameter optimization design of pantograph and catenary system[J]. Finite Element in Analysis and Design, 2011, 47(3): 288-295.
    梅桂明,张卫华. 受电弓/接触网系统动力学模型及特性[J]. 交通运输工程学报,2002,2(1): 20-25. MEI Guiming, ZHANG Weihua. Dynamics model and behavior of pantograph/catenary system[J]. Journal of Traffic and Transportation Engineering, 2002, 2(1): 20-25.
    BRUNI S, AMBROSIO J, CARNICERO A, et al. The results of the pantograph-catenary interaction benchmark[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 2015, 53(3): 1-9.
    ZHOU N, L Q, YANG Y, et al. Statement of methods vehicle system dynamics[J]. International Journal of Vehicle Mechanics and Mobility, 2015, 53(3): 380-391.
    VAN O V, MASSAT J P, LAURENT C, et al. Introduction of variability in pantograph-catenary dynamic simulations[J]. International Journal of Vehicle Mechanics and Mobility, 2014, 52(10): 1254-1269.
  • Relative Articles

    [1]CHEN Long, LIU Zhigang, DUAN Fuchuan, HU Zeyao, XU Zhao, CHEN Ke. Fast Simulation Method for Pantograph and Overhead Conductor Rail System[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230206
    [2]ZHOU Ning, WANG Jundong, LIU Yueping, YANG Xuan, LI Yan, WU Zaixin, ZHANG Weihua. Image Processing Based Method for Measuring Contact Force in Pantograph-Catenary System[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 1-8, 57. doi: 10.3969/j.issn.0258-2724.20210509
    [3]MEI Guiming. Experimental Study on Wear Performance of Rigid Catenary-Pantograph System with Direct Current[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1305-1310. doi: 10.3969/j.issn.0258-2724.20200432
    [4]GUAN Jinfa, TIAN Zhijun, ZHANG Xuewu. Influence of Catenary Stitch Wire Parameters on Dynamic Performance Between Pantograph and Catenary[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 659-665. doi: 10.3969/j.issn.0258-2724.20190326
    [5]TAN Mengying, ZOU Dong, LI Ruiping, LI Yan, ZHOU Ning, MEI Guiming, ZHANG Weihua, HUANG Guanhua. New Contact Force Measuring Method for Overhead Catenary Systems Based on Strain[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1208-1215. doi: 10.3969/j.issn.0258-2724.2017.06.023
    [6]WANG Boming, CHEN Hongyu, LI Zhize, TAN Hongyuan. Curve-Passing Dynamic Performance of Portal Bogie with Forced Steering Mechanism[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 91-97. doi: 10.3969/j.issn.0258-2724.2016.01.014
    [7]LU Xiaobing, LIU Zhigang. Applicability of Active Control Algorithms for Pantographs of High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 233-240. doi: 10.3969/j.issn.0258-2724.2015.02.005
    [8]XIE Kaize, WANG Ping, XU Jingmang, XU Hao. Adaptability of Continuous Welded Rail of Unit Slab Non-ballast Track on Bridges[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 649-655. doi: 10.3969/j.issn.0258-2724.2014.04.014
    [9]ZHOU Ning, ZHANG Weihua, WANG Dong. Lumped Mass Model for Dynamic Performance Simulation of Pantograph[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 398-403. doi: 10.3969/j.issn.0258-2724.2011.03.007
    [10]CHEN Weirong, LI Wenhao, ZHANG Qian, THOMAS Reichmann. Comparison of Dynamic Performances of Several Pantograph/Catenary Systems for High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2009, 22(3): 354-359.
    [11]WU Yan, WU Junyong, ZHENG Jihao. Simulation of High-Speed Pantograph Dynamic Performance Based on Finite Element Model and Aerodynamic Pantograph Model[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 855-859.
    [12]ZHOU Ning, ZHANG Weihua. Dynamic Performances of Pantograph-Catenary System with Double Pantographs[J]. Journal of Southwest Jiaotong University, 2009, 22(4): 552-557.
    [13]MA Weihua, LUO Shihui, SONG Rongrong. Improvement of Dynamic Performance of Speed-Raising Locomotive with Motor Mounted on Frame[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 84-88.
    [14]CHEN Tang-Long, XU  Di, CHEN Yao-Kun. Study on Vibration Compensation of Measuring Cars for Overhead Contact Line Equipment[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 461-465.
    [15]Chen Tanglong, Yu D, Chen Yaokun. Study on Vibration Compensation of Measuring Cars for Overhead Contact Line Equipment[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 461-465.
  • Cited by

    Periodical cited type(18)

    1. 董晓,周宁,张欣,魏海飞. 城市轨道交通车体垂向振动对弓网受流性能的影响. 城市轨道交通研究. 2024(04): 22-27+32 .
    2. 魏海飞,周宁,李牧迪,张卫华,张敏,石长友,伍开洋. 复杂工况下受电弓升弓碰撞特性. 城市轨道交通研究. 2024(12): 97-102 .
    3. 杨艺. 刚性悬挂接触网结构参数对地铁弓网系统受流特性影响仿真分析. 城市轨道交通研究. 2023(05): 237-242 .
    4. 郭英强. 基于响应面和BP神经网络的弓网动力学优化. 技术与市场. 2023(06): 1-7 .
    5. 祁文延,王江文,张士宇,黄仲,卢静,梅桂明. 城市轨道交通受电弓参数敏度分析及优化设计. 噪声与振动控制. 2022(04): 190-195+250 .
    6. 杜子学,何超,杨震,周军超,许舟洲. 基于刚柔耦合的跨坐式单轨车辆受电弓疲劳分析. 城市轨道交通研究. 2021(01): 16-21 .
    7. 朱海燕,曾庆涛,王宇豪,曾京,邬平波,朱志和,王超文,袁遥,肖乾. 高速列车动力学性能研究进展. 交通运输工程学报. 2021(03): 57-92 .
    8. 张玲芳,黄国君,杨国伟,程桂军,纪占玲. 刚性接触网悬挂结构刚度识别方法. 铁道科学与工程学报. 2021(11): 3032-3039 .
    9. 邹欢,周宁,邹栋,张卫华. 坡度和曲线线路对弓网受流性能影响规律研究. 机车电传动. 2020(02): 104-108 .
    10. 李震. 智慧交通管理系统的设计与应用. 计算机技术与发展. 2020(05): 170-174 .
    11. 吴亚飞. 弹性吊索对接触网锚段关节弓网受流影响分析. 铁道标准设计. 2020(09): 158-161 .
    12. 王宁. 轨道交通综合监控系统智能化研究. 微型电脑应用. 2020(12): 130-133 .
    13. 郭艳红. 列车受电弓振动控制方法研究. 机械强度. 2019(02): 483-487 .
    14. 钟源,钱清泉,吴积钦,徐可佳. 地铁受电弓等效模型的半虚拟参数识别. 铁道学报. 2019(03): 50-57 .
    15. 刘锂,段芃芃. 智慧城市交通网络系统的研究与应用. 计算机技术与发展. 2019(08): 185-189 .
    16. 李强. 基于关联性模型的城市轨道交通综合监控系统设计. 自动化与仪器仪表. 2019(09): 63-66 .
    17. 张煜,高仕斌,代洪宇. 基于ANSYS和ADAMS的地铁弓网柔性耦合仿真分析. 电气化铁道. 2019(05): 60-63 .
    18. 于金鑫,于龙,冯超. 基于仿真方法研究中间接头对弓网接触压力的影响. 电工技术. 2018(16): 150-153+156 .

    Other cited types(27)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.2 %FULLTEXT: 23.2 %META: 76.8 %META: 76.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %上海: 0.7 %上海: 0.7 %东莞: 0.2 %东莞: 0.2 %临汾: 0.5 %临汾: 0.5 %佛山: 0.2 %佛山: 0.2 %兰州: 0.5 %兰州: 0.5 %北京: 1.0 %北京: 1.0 %哥伦布: 0.5 %哥伦布: 0.5 %喀什: 0.2 %喀什: 0.2 %大连: 0.2 %大连: 0.2 %天津: 1.9 %天津: 1.9 %张家口: 2.2 %张家口: 2.2 %成都: 2.2 %成都: 2.2 %昆明: 0.2 %昆明: 0.2 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.0 %杭州: 1.0 %武汉: 1.0 %武汉: 1.0 %池州: 0.5 %池州: 0.5 %沈阳: 0.5 %沈阳: 0.5 %洛阳: 1.0 %洛阳: 1.0 %深圳: 1.0 %深圳: 1.0 %温州: 0.5 %温州: 0.5 %漯河: 1.0 %漯河: 1.0 %濮阳: 0.5 %濮阳: 0.5 %石家庄: 1.7 %石家庄: 1.7 %芒廷维尤: 17.9 %芒廷维尤: 17.9 %芝加哥: 1.0 %芝加哥: 1.0 %蒙特利尔: 0.2 %蒙特利尔: 0.2 %衢州: 0.2 %衢州: 0.2 %西宁: 50.7 %西宁: 50.7 %西安: 1.4 %西安: 1.4 %西雅图: 0.2 %西雅图: 0.2 %郑州: 0.2 %郑州: 0.2 %长沙: 3.1 %长沙: 3.1 %青岛: 1.0 %青岛: 1.0 %其他上海东莞临汾佛山兰州北京哥伦布喀什大连天津张家口成都昆明朝阳杭州武汉池州沈阳洛阳深圳温州漯河濮阳石家庄芒廷维尤芝加哥蒙特利尔衢州西宁西安西雅图郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(636) PDF downloads(136) Cited by(45)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return