Citation: | WANG Biao, QIN Yong, JIA Limin, CHENG Xiaoqing, ZENG Chunping, GAO Yifan. Monitoring Data-Driven Prediction of Remaining Useful Life of Axle-Box Bearings for Urban Rail Transit Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 229-238. doi: 10.3969/j.issn.0258-2724.20220230 |
The operating conditions of axle-box bearings of urban rail transit trains are complex and time-varying, and they often suffer from random external interferences. Correspondingly, the monitoring data of axle-box bearings contain a great amount of measurement noise and even abnormal data, thereby limiting the accuracy of prognostics models. To overcome the aforementioned problems, a monitoring data-driven dynamic multiple aggregation prediction method is proposed for forecasting the remaining useful life (RUL) of axle-box bearings of urban rail transit trains. In the proposed method, abnormal data are first automatically recognized and deleted by measuring the amplitude distribution similarity between signals in a short time. Then, various degradation curves can be fitted to predict the mean and variance of RUL by aggregating health indicators from different temporal scales. The proposed method is evaluated using vibration data from real monitoring systems of urban rail transit trains and accelerated degradation tests of rolling element bearings. The results show that the proposed method is able to effectively recognize the not a number (NaN) data and strong interference data, and as time goes on, the predictive RUL converges to the actual RUL gradually and the 95% confidence interval becomes narrower. Further, compared with the single exponential prognostics model and the hybrid prognostics model, the proposed method increases the mean of cumulative relative accuracy by 29.78% and 27.63% respectively, and improves the mean of convergence speed by 10.56% and 10.20% respectively.
[1] |
中国城市轨道交通协会. 城市轨道交通2021年度统计和分析报告[R]. 北京: 中国城市轨道交通协会, 2022.
|
[2] |
裴洪,胡昌华,司小胜,等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报,2019,55(8): 1-13. doi: 10.3901/JME.2019.08.001
PEI Hong, HU Changhua, SI Xiaosheng, et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering, 2019, 55(8): 1-13. doi: 10.3901/JME.2019.08.001
|
[3] |
LEI Y G, LI N P, GONTARZ S, et al. A model-based method for remaining useful life prediction of machinery[J]. IEEE Transactions on Reliability, 2016, 65(3): 1314-1326. doi: 10.1109/TR.2016.2570568
|
[4] |
EL-TAWIL K, JAOUDE A A. Stochastic and nonlinear-based prognostic model[J]. Systems Science & Control Engineering, 2013, 1(1): 66-81.
|
[5] |
PAROISSIN C. Inference for the Wiener process with random initiation time[J]. IEEE Transactions on Reliability, 2016, 65(1): 147-157. doi: 10.1109/TR.2015.2456056
|
[6] |
KHELIF R, CHEBEL-MORELLO B, MALINOWSKI S, et al. Direct remaining useful life estimation based on support vector regression[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2276-2285. doi: 10.1109/TIE.2016.2623260
|
[7] |
WANG B, LEI Y G, LI N P, et al. Multiscale convolutional attention network for predicting remaining useful life of machinery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7496-7504. doi: 10.1109/TIE.2020.3003649
|
[8] |
HUANG C G, HUANG H Z, LI Y F. A bidirectional LSTM prognostics method under multiple operational conditions[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8792-8802. doi: 10.1109/TIE.2019.2891463
|
[9] |
WANG B, LEI Y G, LI N P, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2020, 69(1): 401-412. doi: 10.1109/TR.2018.2882682
|
[10] |
刘德昆,李强,王曦,等. 动车组轴箱轴承基于实测载荷的寿命预测方法[J]. 机械工程学报,2016,52(22): 45-54. doi: 10.3901/JME.2016.22.045
LIU Dekun, LI Qiang, WANG Xi, et al. Life prediction method for EMU axle box bearings based on actual measured loadings[J]. Journal of Mechanical Engineering, 2016, 52(22): 45-54. doi: 10.3901/JME.2016.22.045
|
[11] |
赵珂,顾佳,姜喜民. 动车组转向架轴箱剩余寿命预测方法研究[J]. 软件,2020,41(3): 219-224. doi: 10.3969/j.issn.1003-6970.2020.03.052
ZHAO Ke, GU Jia, JIANG Ximin. Research on prediction method of residual life of bogie axle box for multiple unit train[J]. Computer Engineering & Software, 2020, 41(3): 219-224. doi: 10.3969/j.issn.1003-6970.2020.03.052
|
[12] |
吕晟. 城市轨道交通车辆走行部轴箱轴承健康评估及寿命预测系统[J]. 城市轨道交通研究,2021,24(增1): 149-153. doi: 10.16037/j.1007-869x.2021.S1.033
LYU Sheng. Health assessment and life prediction system for axle box bearing of urban rail transit vehicle running gear[J]. Urban Mass Transit, 2021, 24(S1): 149-153. doi: 10.16037/j.1007-869x.2021.S1.033
|
[13] |
刘嘉蔚,李奇,陈维荣,等. 基于核超限学习机和局部加权回归散点平滑法的PEMFC剩余使用寿命预测方法[J]. 中国电机工程学报,2019,39(24): 7272-7279,7500. doi: 10.13334/J.0258-8013.PCSEE.181614
LIU Jiawei, LI Qi, CHEN Weirong, et al. Remaining useful life prediction method of PEMFC based on kernel extreme learning machine and locally weighted scatterplot smoothing[J]. Proceedings of the CSEE, 2019, 39(24): 7272-7279,7500. doi: 10.13334/J.0258-8013.PCSEE.181614
|
[14] |
LI N P, LEI Y G, LIN J, et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7762-7773. doi: 10.1109/TIE.2015.2455055
|
[15] |
SAXENA A, CELAYA J, SAHA B, et al. Metrics for offline evaluation of prognostic performance[J]. International Journal of Prognostics and Health Management, 2021, 1(1): 2153-2648.
|
[16] |
DU W L, HOU X K, WANG H C. Time-varying degradation model for remaining useful life prediction of rolling bearings under variable rotational speed[J]. Applied Sciences, 2022, 12(8): 4044.1-4044.17. doi: 10.3390/app12084044
|
[1] | CHEN Bingyan, GU Fengshou, ZHANG Weihua, SONG Dongli, CHENG Yao. Axle-Box Bearing Fault Diagnosis Based on Multiband Weighted Envelope Spectrum[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 201-210. doi: 10.3969/j.issn.0258-2724.20220047 |
[2] | WANG Tao, TAN Ji, LIU Dong, YANG Yejiang. Modeling of State-Dependent Switching System Based on Data-Driven[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 493-500. doi: 10.3969/j.issn.0258-2724.20210579 |
[3] | CHENG Yao, CHEN Bingyan, ZHANG Weihua, LI Fuzhong. Fault Diagnosis of Axle-Box Bearing Based on Weighted Combined Improved Envelope Spectrum[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 142-150. doi: 10.3969/j.issn.0258-2724.20220019 |
[4] | LIU Wei, LIU Tongtong, WANG Hui, LI Kunpeng, ZHANG Jian, SANG Guoyang, WU Tuojian. Dynamic Simulation of Load Process for Urban Rail Power Supply System Driven by Operation Diagram[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 967-975. doi: 10.3969/j.issn.0258-2724.20200752 |
[5] | WEN Tao, XIA Wentao, ZHOU Xu, LONG Zhiqiang. Data-Driven Parameter Tuning for Maglev Train Levitation System[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 506-513. doi: 10.3969/j.issn.0258-2724.20210792 |
[6] | SHI Haiou, YUAN Quan, ZHANG Yunlin, ZENG Wenqu, ZHENG Qing, DING Guofu. Multi-Discipline Forward Collaborative Design Technology Based on BIM Interaction and Data-Driven[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 176-181. doi: 10.3969/j.issn.0258-2724.20200035 |
[7] | GUO Liang, LI Changgen, GAO Hongli, DONG Xun, XIANG Shoubing. Residual Life Prediction of Mechanical Equipment Based on Feature Learning in Big Data Background[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 730-735, 768. doi: 10.3969/j.issn.0258-2724.20190528 |
[8] | ZHAO Congcong, LIU Yumei, ZHAO Yinghui, BAI Yang. Fault Detection of Axle Box Bearing Based on Matter-Element and Negative Selection Algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 973-980. doi: 10.3969/j.issn.0258-2724.20191103 |
[9] | ZHAO Congcong, BAI Yang, LIU Yumei, ZHAO Yinghui, SHI Jihong. Condition Monitoring of Axle Box Bearing Based on Improved Safety Region[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 889-895. doi: 10.3969/j.issn.0258-2724.20180584 |
[10] | ZHANG Xuexia, GAO Yuxuan, CHEN Weirong. Data-Driven Based Remaining Useful Life Prediction for Proton Exchange Membrane Fuel Cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427. doi: 10.3969/j.issn.0258-2724.20180016 |
[11] | HU Jiexin, XIE Liyang, YU Haiyang, LIU Longxi, YIN Wei, HU Zhiyong. Virtual Experiments to Predict Bolster Fatigue Lifetime Based on FEM Model Validated by Static Tests[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 106-112. doi: 10.3969/j.issn.0258-2724.20160536 |
[12] | WEI Xing, JIANG Su. Fatigue Life Prediction on Rib-to-Deck Welded Joints of Steel Bridge Deck Based on LEFM[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 16-22. doi: 10.3969/j.issn.0258-2724.2017.01.003 |
[13] | ZHU Qing, CHEN Xingwang, DING Yulin, LIU Mingwei, HE Huagui, YANG Weijun, CHEN Liyan, CAO Zhenyu. Organization and Scheduling Method of 3D Urban Scene Data Driven by Visual Perception[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 869-876. doi: 10.3969/j.issn.0258-2724.2017.05.005 |
[14] | LIAO Ping, XIAO Lin, WEI Xing, ZHAO Renda, TANG Jishun. Fatigue Life Prediction and Parameter Analysis of Girder New Detail[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 639-644. doi: 10.3969/j.issn.0258-2724.2016.04.006 |
[15] | LIU Wei, WANG Dong, LI Qunzhan, CUI Mengyu. A Novel Time-Approaching Search Algorithm for Energy-Saving Optimization of Urban Rail Train[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 918-924. doi: 10.3969/j.issn.0258-2724.2016.05.014 |
[16] | ZHU Qing, DING Yulin, MIAO Shuangxi, CAO Zhenyu. Precise Simulation Method for Dynamic Data Driven Landslide Hazards[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 396-403. doi: 10.3969/j.issn.0258-2724.2016.02.019 |
[17] | GAO Hongli, LI Dengwan, XU Mingheng. Intelligent Monitoring System for Screw Life Evaluation[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 685-691. doi: 10.3969/j.issn.0258-2724.2010.05.006 |
[18] | SHEN Yuanxia, WANG Guoyin. Data-Driven Q-Learning in Dynamic Environment[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 877-881. |
1. | 孟春成,亐道远,段晓晨. 城市轨道交通土建工程造价非线性预测与反演. 西南交通大学学报. 2025(01): 137-146 . ![]() | |
2. | 王康,齐金平. 基于超椭球Markov的列车控制中心剩余使用寿命预测. 铁路计算机应用. 2024(02): 67-73 . ![]() | |
3. | 李静瑜,丁菊霞. 轨道交通智能化发展现状及关键系统分析. 计算机应用. 2024(S2): 316-322 . ![]() |