• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 1
Jan.  2024
Recommendations
Identification of wheel-rail vertical forces of rail vehicles based on square root cubature kalman filter algorithm
CHEN Qinghua et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2025
Fault diagnosis of axle-box bearing based on weighted combined improved envelope spectrum
CHENG Yao et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2024
Wheel out-of-roundness identification approach based on axlebox high-frequency vibrations
WEI Lai et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2024
Calibration method of bi-block ballastless track monitoring on sleeper pressure
LI Peigang et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2023
Remaining useful life prediction of ball screw bearings based on relevance vector regression and trajectory similarity analysis
XUE Bin et al., BEARING, 2025
Application of kriging model in residual useful life prediction of rolling bearings
LIU Jiwen et al., BEARING, 2025
Feature dimensionality reduction and random forest method in intelligent diagnosis of rolling bearings for urban rail trains
CAO Zhen;CUI Lu-yao;LEI Bin;WANG Jing-yi;CAO Shuang-sheng et al., JOURNAL OF JILIN UNIVERSITY, 2022
Analysis of lipid molecule profiling and conversion pathway in mandarin fish (siniperca chuatsi) during fermentation via untargeted lipidomics
Chen, Jia-Nan et al., JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023
Study on remaining useful life prediction of sliding bearings in nuclear power plant shielded pumps based on nearest similar distance particle filtering
ANNALS OF NUCLEAR ENERGY, 2025
Variable filtered-waveform variational mode decomposition and its application in rolling bearing fault feature extraction
ENTROPY, 2025
Powered by
WANG Biao, QIN Yong, JIA Limin, CHENG Xiaoqing, ZENG Chunping, GAO Yifan. Monitoring Data-Driven Prediction of Remaining Useful Life of Axle-Box Bearings for Urban Rail Transit Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 229-238. doi: 10.3969/j.issn.0258-2724.20220230
Citation: WANG Biao, QIN Yong, JIA Limin, CHENG Xiaoqing, ZENG Chunping, GAO Yifan. Monitoring Data-Driven Prediction of Remaining Useful Life of Axle-Box Bearings for Urban Rail Transit Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 229-238. doi: 10.3969/j.issn.0258-2724.20220230

Monitoring Data-Driven Prediction of Remaining Useful Life of Axle-Box Bearings for Urban Rail Transit Trains

doi: 10.3969/j.issn.0258-2724.20220230
  • Received Date: 31 Mar 2022
  • Rev Recd Date: 03 Jul 2022
  • Available Online: 17 Dec 2022
  • Publish Date: 07 Jul 2022
  • The operating conditions of axle-box bearings of urban rail transit trains are complex and time-varying, and they often suffer from random external interferences. Correspondingly, the monitoring data of axle-box bearings contain a great amount of measurement noise and even abnormal data, thereby limiting the accuracy of prognostics models. To overcome the aforementioned problems, a monitoring data-driven dynamic multiple aggregation prediction method is proposed for forecasting the remaining useful life (RUL) of axle-box bearings of urban rail transit trains. In the proposed method, abnormal data are first automatically recognized and deleted by measuring the amplitude distribution similarity between signals in a short time. Then, various degradation curves can be fitted to predict the mean and variance of RUL by aggregating health indicators from different temporal scales. The proposed method is evaluated using vibration data from real monitoring systems of urban rail transit trains and accelerated degradation tests of rolling element bearings. The results show that the proposed method is able to effectively recognize the not a number (NaN) data and strong interference data, and as time goes on, the predictive RUL converges to the actual RUL gradually and the 95% confidence interval becomes narrower. Further, compared with the single exponential prognostics model and the hybrid prognostics model, the proposed method increases the mean of cumulative relative accuracy by 29.78% and 27.63% respectively, and improves the mean of convergence speed by 10.56% and 10.20% respectively.

     

  • [1]
    中国城市轨道交通协会. 城市轨道交通2021年度统计和分析报告[R]. 北京: 中国城市轨道交通协会, 2022.
    [2]
    裴洪,胡昌华,司小胜,等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报,2019,55(8): 1-13. doi: 10.3901/JME.2019.08.001

    PEI Hong, HU Changhua, SI Xiaosheng, et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering, 2019, 55(8): 1-13. doi: 10.3901/JME.2019.08.001
    [3]
    LEI Y G, LI N P, GONTARZ S, et al. A model-based method for remaining useful life prediction of machinery[J]. IEEE Transactions on Reliability, 2016, 65(3): 1314-1326. doi: 10.1109/TR.2016.2570568
    [4]
    EL-TAWIL K, JAOUDE A A. Stochastic and nonlinear-based prognostic model[J]. Systems Science & Control Engineering, 2013, 1(1): 66-81.
    [5]
    PAROISSIN C. Inference for the Wiener process with random initiation time[J]. IEEE Transactions on Reliability, 2016, 65(1): 147-157. doi: 10.1109/TR.2015.2456056
    [6]
    KHELIF R, CHEBEL-MORELLO B, MALINOWSKI S, et al. Direct remaining useful life estimation based on support vector regression[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2276-2285. doi: 10.1109/TIE.2016.2623260
    [7]
    WANG B, LEI Y G, LI N P, et al. Multiscale convolutional attention network for predicting remaining useful life of machinery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7496-7504. doi: 10.1109/TIE.2020.3003649
    [8]
    HUANG C G, HUANG H Z, LI Y F. A bidirectional LSTM prognostics method under multiple operational conditions[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8792-8802. doi: 10.1109/TIE.2019.2891463
    [9]
    WANG B, LEI Y G, LI N P, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2020, 69(1): 401-412. doi: 10.1109/TR.2018.2882682
    [10]
    刘德昆,李强,王曦,等. 动车组轴箱轴承基于实测载荷的寿命预测方法[J]. 机械工程学报,2016,52(22): 45-54. doi: 10.3901/JME.2016.22.045

    LIU Dekun, LI Qiang, WANG Xi, et al. Life prediction method for EMU axle box bearings based on actual measured loadings[J]. Journal of Mechanical Engineering, 2016, 52(22): 45-54. doi: 10.3901/JME.2016.22.045
    [11]
    赵珂,顾佳,姜喜民. 动车组转向架轴箱剩余寿命预测方法研究[J]. 软件,2020,41(3): 219-224. doi: 10.3969/j.issn.1003-6970.2020.03.052

    ZHAO Ke, GU Jia, JIANG Ximin. Research on prediction method of residual life of bogie axle box for multiple unit train[J]. Computer Engineering & Software, 2020, 41(3): 219-224. doi: 10.3969/j.issn.1003-6970.2020.03.052
    [12]
    吕晟. 城市轨道交通车辆走行部轴箱轴承健康评估及寿命预测系统[J]. 城市轨道交通研究,2021,24(增1): 149-153. doi: 10.16037/j.1007-869x.2021.S1.033

    LYU Sheng. Health assessment and life prediction system for axle box bearing of urban rail transit vehicle running gear[J]. Urban Mass Transit, 2021, 24(S1): 149-153. doi: 10.16037/j.1007-869x.2021.S1.033
    [13]
    刘嘉蔚,李奇,陈维荣,等. 基于核超限学习机和局部加权回归散点平滑法的PEMFC剩余使用寿命预测方法[J]. 中国电机工程学报,2019,39(24): 7272-7279,7500. doi: 10.13334/J.0258-8013.PCSEE.181614

    LIU Jiawei, LI Qi, CHEN Weirong, et al. Remaining useful life prediction method of PEMFC based on kernel extreme learning machine and locally weighted scatterplot smoothing[J]. Proceedings of the CSEE, 2019, 39(24): 7272-7279,7500. doi: 10.13334/J.0258-8013.PCSEE.181614
    [14]
    LI N P, LEI Y G, LIN J, et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7762-7773. doi: 10.1109/TIE.2015.2455055
    [15]
    SAXENA A, CELAYA J, SAHA B, et al. Metrics for offline evaluation of prognostic performance[J]. International Journal of Prognostics and Health Management, 2021, 1(1): 2153-2648.
    [16]
    DU W L, HOU X K, WANG H C. Time-varying degradation model for remaining useful life prediction of rolling bearings under variable rotational speed[J]. Applied Sciences, 2022, 12(8): 4044.1-4044.17. doi: 10.3390/app12084044
  • Relative Articles

    [1]WANG Shengbo, JIANG Xiaomo, CHEN Bingyan, CHENG Yao, MEI Guiming. Axle-Box Bearing Fault Diagnosis of Railway Vehicle Based on Enhanced Time-Varying Morphological Filtering[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240297
    [2]WANG Ming, LI Xingxing, LI Xiaozhen. Mechanism of High-Speed Train Crosswind Overturning Stability Based on Frequency Domain Analysis[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 315-322, 342. doi: 10.3969/j.issn.0258-2724.20210571
    [3]WEI Lai, ZENG Jing, GAO Hao, QU Sheng, SUN Yi. Wheel Out-of-Roundness Identification Approach Based on Axlebox High-Frequency Vibrations[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 211-219. doi: 10.3969/j.issn.0258-2724.20211085
    [4]CHEN Bingyan, GU Fengshou, ZHANG Weihua, SONG Dongli, CHENG Yao. Axle-Box Bearing Fault Diagnosis Based on Multiband Weighted Envelope Spectrum[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 201-210. doi: 10.3969/j.issn.0258-2724.20220047
    [5]WANG Tao, TAN Ji, LIU Dong, YANG Yejiang. Modeling of State-Dependent Switching System Based on Data-Driven[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 493-500. doi: 10.3969/j.issn.0258-2724.20210579
    [6]CHENG Yao, CHEN Bingyan, ZHANG Weihua, LI Fuzhong. Fault Diagnosis of Axle-Box Bearing Based on Weighted Combined Improved Envelope Spectrum[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 142-150. doi: 10.3969/j.issn.0258-2724.20220019
    [7]LIU Wei, LIU Tongtong, WANG Hui, LI Kunpeng, ZHANG Jian, SANG Guoyang, WU Tuojian. Dynamic Simulation of Load Process for Urban Rail Power Supply System Driven by Operation Diagram[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 967-975. doi: 10.3969/j.issn.0258-2724.20200752
    [8]WEN Tao, XIA Wentao, ZHOU Xu, LONG Zhiqiang. Data-Driven Parameter Tuning for Maglev Train Levitation System[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 506-513. doi: 10.3969/j.issn.0258-2724.20210792
    [9]SHI Haiou, YUAN Quan, ZHANG Yunlin, ZENG Wenqu, ZHENG Qing, DING Guofu. Multi-Discipline Forward Collaborative Design Technology Based on BIM Interaction and Data-Driven[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 176-181. doi: 10.3969/j.issn.0258-2724.20200035
    [10]GUO Liang, LI Changgen, GAO Hongli, DONG Xun, XIANG Shoubing. Residual Life Prediction of Mechanical Equipment Based on Feature Learning in Big Data Background[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 730-735, 768. doi: 10.3969/j.issn.0258-2724.20190528
    [11]ZHAO Congcong, LIU Yumei, ZHAO Yinghui, BAI Yang. Fault Detection of Axle Box Bearing Based on Matter-Element and Negative Selection Algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 973-980. doi: 10.3969/j.issn.0258-2724.20191103
    [12]ZHAO Congcong, BAI Yang, LIU Yumei, ZHAO Yinghui, SHI Jihong. Condition Monitoring of Axle Box Bearing Based on Improved Safety Region[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 889-895. doi: 10.3969/j.issn.0258-2724.20180584
    [13]ZHANG Xuexia, GAO Yuxuan, CHEN Weirong. Data-Driven Based Remaining Useful Life Prediction for Proton Exchange Membrane Fuel Cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427. doi: 10.3969/j.issn.0258-2724.20180016
    [14]ZHU Qing, CHEN Xingwang, DING Yulin, LIU Mingwei, HE Huagui, YANG Weijun, CHEN Liyan, CAO Zhenyu. Organization and Scheduling Method of 3D Urban Scene Data Driven by Visual Perception[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 869-876. doi: 10.3969/j.issn.0258-2724.2017.05.005
    [15]ZHU Qing, DING Yulin, MIAO Shuangxi, CAO Zhenyu. Precise Simulation Method for Dynamic Data Driven Landslide Hazards[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 396-403. doi: 10.3969/j.issn.0258-2724.2016.02.019
    [16]GAO Hongli, LI Dengwan, XU Mingheng. Intelligent Monitoring System for Screw Life Evaluation[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 685-691. doi: 10.3969/j.issn.0258-2724.2010.05.006
    [17]SHEN Yuanxia, WANG Guoyin. Data-Driven Q-Learning in Dynamic Environment[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 877-881.
  • Cited by

    Periodical cited type(3)

    1. 孟春成,亐道远,段晓晨. 城市轨道交通土建工程造价非线性预测与反演. 西南交通大学学报. 2025(01): 137-146 . 本站查看
    2. 王康,齐金平. 基于超椭球Markov的列车控制中心剩余使用寿命预测. 铁路计算机应用. 2024(02): 67-73 .
    3. 李静瑜,丁菊霞. 轨道交通智能化发展现状及关键系统分析. 计算机应用. 2024(S2): 316-322 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-122025-012025-022025-032025-042025-052025-062025-072025-082025-092025-102025-11010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 44.9 %FULLTEXT: 44.9 %META: 44.2 %META: 44.2 %PDF: 10.9 %PDF: 10.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.4 %其他: 20.4 %其他: 0.4 %其他: 0.4 %Matawan: 0.1 %Matawan: 0.1 %上海: 1.2 %上海: 1.2 %东莞: 0.4 %东莞: 0.4 %临汾: 0.1 %临汾: 0.1 %临沂: 0.2 %临沂: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %佛山: 0.2 %佛山: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 9.9 %北京: 9.9 %十堰: 0.3 %十堰: 0.3 %南京: 0.9 %南京: 0.9 %南宁: 0.2 %南宁: 0.2 %南昌: 0.3 %南昌: 0.3 %南通: 0.2 %南通: 0.2 %厦门: 0.4 %厦门: 0.4 %古吉拉特: 0.2 %古吉拉特: 0.2 %台州: 0.2 %台州: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %大庆: 0.3 %大庆: 0.3 %大连: 0.5 %大连: 0.5 %天津: 1.2 %天津: 1.2 %奥斯特拉瓦: 0.2 %奥斯特拉瓦: 0.2 %安康: 0.1 %安康: 0.1 %宣城: 0.9 %宣城: 0.9 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 0.1 %广州: 0.1 %张家口: 3.8 %张家口: 3.8 %德阳: 0.1 %德阳: 0.1 %悉尼: 1.2 %悉尼: 1.2 %成都: 1.4 %成都: 1.4 %扬州: 1.2 %扬州: 1.2 %新乡: 0.1 %新乡: 0.1 %昆明: 0.2 %昆明: 0.2 %曲靖: 0.1 %曲靖: 0.1 %曼谷: 0.1 %曼谷: 0.1 %朝阳: 0.5 %朝阳: 0.5 %杭州: 0.9 %杭州: 0.9 %松原: 0.2 %松原: 0.2 %格兰特县: 0.1 %格兰特县: 0.1 %榆林: 0.2 %榆林: 0.2 %武汉: 0.6 %武汉: 0.6 %池州: 0.3 %池州: 0.3 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.2 %泰安: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.2 %济南: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 0.3 %深圳: 0.3 %温州: 0.7 %温州: 0.7 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 4.6 %漯河: 4.6 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %珠海: 0.3 %珠海: 0.3 %白银: 0.1 %白银: 0.1 %益阳: 0.1 %益阳: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 3.8 %石家庄: 3.8 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 9.1 %芒廷维尤: 9.1 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.2 %苏州: 0.2 %荆门: 0.1 %荆门: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.3 %衡阳: 0.3 %襄阳: 0.1 %襄阳: 0.1 %西宁: 20.3 %西宁: 20.3 %西安: 0.9 %西安: 0.9 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.6 %运城: 0.6 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.9 %郑州: 0.9 %重庆: 0.6 %重庆: 0.6 %锦州: 0.1 %锦州: 0.1 %镇江: 0.2 %镇江: 0.2 %长春: 0.3 %长春: 0.3 %长沙: 2.1 %长沙: 2.1 %雷德蒙德: 0.3 %雷德蒙德: 0.3 %青岛: 0.5 %青岛: 0.5 %黄冈: 0.2 %黄冈: 0.2 %其他其他Matawan上海东莞临汾临沂乌鲁木齐佛山兰州北京十堰南京南宁南昌南通厦门古吉拉特台州哈尔滨唐山嘉兴大庆大连天津奥斯特拉瓦安康宣城常州常德广州张家口德阳悉尼成都扬州新乡昆明曲靖曼谷朝阳杭州松原格兰特县榆林武汉池州沈阳泰安洛阳济南淄博深圳温州湖州湘潭漯河烟台焦作珠海白银益阳盐城石家庄福州秦皇岛芒廷维尤芜湖芝加哥苏州荆门蚌埠衡阳襄阳西宁西安诺沃克贵阳运城邯郸郑州重庆锦州镇江长春长沙雷德蒙德青岛黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(563) PDF downloads(139) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return