• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
WANG Biao, QIN Yong, JIA Limin, CHENG Xiaoqing, ZENG Chunping, GAO Yifan. Monitoring Data-Driven Prediction of Remaining Useful Life of Axle-Box Bearings for Urban Rail Transit Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 229-238. doi: 10.3969/j.issn.0258-2724.20220230
Citation: WANG Biao, QIN Yong, JIA Limin, CHENG Xiaoqing, ZENG Chunping, GAO Yifan. Monitoring Data-Driven Prediction of Remaining Useful Life of Axle-Box Bearings for Urban Rail Transit Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 229-238. doi: 10.3969/j.issn.0258-2724.20220230

Monitoring Data-Driven Prediction of Remaining Useful Life of Axle-Box Bearings for Urban Rail Transit Trains

doi: 10.3969/j.issn.0258-2724.20220230
  • Received Date: 31 Mar 2022
  • Rev Recd Date: 03 Jul 2022
  • Available Online: 17 Dec 2022
  • Publish Date: 07 Jul 2022
  • The operating conditions of axle-box bearings of urban rail transit trains are complex and time-varying, and they often suffer from random external interferences. Correspondingly, the monitoring data of axle-box bearings contain a great amount of measurement noise and even abnormal data, thereby limiting the accuracy of prognostics models. To overcome the aforementioned problems, a monitoring data-driven dynamic multiple aggregation prediction method is proposed for forecasting the remaining useful life (RUL) of axle-box bearings of urban rail transit trains. In the proposed method, abnormal data are first automatically recognized and deleted by measuring the amplitude distribution similarity between signals in a short time. Then, various degradation curves can be fitted to predict the mean and variance of RUL by aggregating health indicators from different temporal scales. The proposed method is evaluated using vibration data from real monitoring systems of urban rail transit trains and accelerated degradation tests of rolling element bearings. The results show that the proposed method is able to effectively recognize the not a number (NaN) data and strong interference data, and as time goes on, the predictive RUL converges to the actual RUL gradually and the 95% confidence interval becomes narrower. Further, compared with the single exponential prognostics model and the hybrid prognostics model, the proposed method increases the mean of cumulative relative accuracy by 29.78% and 27.63% respectively, and improves the mean of convergence speed by 10.56% and 10.20% respectively.

     

  • loading
  • [1]
    中国城市轨道交通协会. 城市轨道交通2021年度统计和分析报告[R]. 北京: 中国城市轨道交通协会, 2022.
    [2]
    裴洪,胡昌华,司小胜,等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报,2019,55(8): 1-13. doi: 10.3901/JME.2019.08.001

    PEI Hong, HU Changhua, SI Xiaosheng, et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering, 2019, 55(8): 1-13. doi: 10.3901/JME.2019.08.001
    [3]
    LEI Y G, LI N P, GONTARZ S, et al. A model-based method for remaining useful life prediction of machinery[J]. IEEE Transactions on Reliability, 2016, 65(3): 1314-1326. doi: 10.1109/TR.2016.2570568
    [4]
    EL-TAWIL K, JAOUDE A A. Stochastic and nonlinear-based prognostic model[J]. Systems Science & Control Engineering, 2013, 1(1): 66-81.
    [5]
    PAROISSIN C. Inference for the Wiener process with random initiation time[J]. IEEE Transactions on Reliability, 2016, 65(1): 147-157. doi: 10.1109/TR.2015.2456056
    [6]
    KHELIF R, CHEBEL-MORELLO B, MALINOWSKI S, et al. Direct remaining useful life estimation based on support vector regression[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2276-2285. doi: 10.1109/TIE.2016.2623260
    [7]
    WANG B, LEI Y G, LI N P, et al. Multiscale convolutional attention network for predicting remaining useful life of machinery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7496-7504. doi: 10.1109/TIE.2020.3003649
    [8]
    HUANG C G, HUANG H Z, LI Y F. A bidirectional LSTM prognostics method under multiple operational conditions[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8792-8802. doi: 10.1109/TIE.2019.2891463
    [9]
    WANG B, LEI Y G, LI N P, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2020, 69(1): 401-412. doi: 10.1109/TR.2018.2882682
    [10]
    刘德昆,李强,王曦,等. 动车组轴箱轴承基于实测载荷的寿命预测方法[J]. 机械工程学报,2016,52(22): 45-54. doi: 10.3901/JME.2016.22.045

    LIU Dekun, LI Qiang, WANG Xi, et al. Life prediction method for EMU axle box bearings based on actual measured loadings[J]. Journal of Mechanical Engineering, 2016, 52(22): 45-54. doi: 10.3901/JME.2016.22.045
    [11]
    赵珂,顾佳,姜喜民. 动车组转向架轴箱剩余寿命预测方法研究[J]. 软件,2020,41(3): 219-224. doi: 10.3969/j.issn.1003-6970.2020.03.052

    ZHAO Ke, GU Jia, JIANG Ximin. Research on prediction method of residual life of bogie axle box for multiple unit train[J]. Computer Engineering & Software, 2020, 41(3): 219-224. doi: 10.3969/j.issn.1003-6970.2020.03.052
    [12]
    吕晟. 城市轨道交通车辆走行部轴箱轴承健康评估及寿命预测系统[J]. 城市轨道交通研究,2021,24(增1): 149-153. doi: 10.16037/j.1007-869x.2021.S1.033

    LYU Sheng. Health assessment and life prediction system for axle box bearing of urban rail transit vehicle running gear[J]. Urban Mass Transit, 2021, 24(S1): 149-153. doi: 10.16037/j.1007-869x.2021.S1.033
    [13]
    刘嘉蔚,李奇,陈维荣,等. 基于核超限学习机和局部加权回归散点平滑法的PEMFC剩余使用寿命预测方法[J]. 中国电机工程学报,2019,39(24): 7272-7279,7500. doi: 10.13334/J.0258-8013.PCSEE.181614

    LIU Jiawei, LI Qi, CHEN Weirong, et al. Remaining useful life prediction method of PEMFC based on kernel extreme learning machine and locally weighted scatterplot smoothing[J]. Proceedings of the CSEE, 2019, 39(24): 7272-7279,7500. doi: 10.13334/J.0258-8013.PCSEE.181614
    [14]
    LI N P, LEI Y G, LIN J, et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7762-7773. doi: 10.1109/TIE.2015.2455055
    [15]
    SAXENA A, CELAYA J, SAHA B, et al. Metrics for offline evaluation of prognostic performance[J]. International Journal of Prognostics and Health Management, 2021, 1(1): 2153-2648.
    [16]
    DU W L, HOU X K, WANG H C. Time-varying degradation model for remaining useful life prediction of rolling bearings under variable rotational speed[J]. Applied Sciences, 2022, 12(8): 4044.1-4044.17. doi: 10.3390/app12084044
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(378) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return