• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 55 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
ZHANG Xuexia, GAO Yuxuan, CHEN Weirong. Data-Driven Based Remaining Useful Life Prediction for Proton Exchange Membrane Fuel Cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427. doi: 10.3969/j.issn.0258-2724.20180016
Citation: ZHANG Xuexia, GAO Yuxuan, CHEN Weirong. Data-Driven Based Remaining Useful Life Prediction for Proton Exchange Membrane Fuel Cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427. doi: 10.3969/j.issn.0258-2724.20180016

Data-Driven Based Remaining Useful Life Prediction for Proton Exchange Membrane Fuel Cells

doi: 10.3969/j.issn.0258-2724.20180016
  • Received Date: 08 Jan 2018
  • Rev Recd Date: 27 Jun 2018
  • Available Online: 05 Sep 2018
  • Publish Date: 01 Apr 2020
  • Proton exchange membrane fuel cell (PEMFC) is a power generation technology with promising application prospects. The prognosis for the remaining useful life of PEMFCs plays an important role in its commercial use. In this work, the degradation mechanism and output characteristics of PEMFCs are reviewed to explore how systems and environmental factors affect the degradation. Then, the status quo of data-driven based RUL prediction methods is summarized, while the neural network prognostics algorithms are highlighted. Furthermore, the sources of uncertainty in prediction algorithms are analyzed. Finally, the future research of RUL prediction is discussed, which focuses on the problems such as limited empirical data, lack of modeling transient processes, and being hard for online prediction. In particular, there remains many difficulties in the remaining useful life prediction of large-power PEMFCs..

     

  • loading
  • GOURIVEAU R, ZERHOUNI N. Connexionist-systems-based long term prediction approaches for prognostics[J]. IEEE Transactions on Reliability, 2012, 61(4): 909-920. doi: 10.1109/TR.2012.2220700
    RAMASSO E, GOURIVEAU R. Remaining useful life estimation by classification of predictions based on a neuro-fuzzy system and theory of belief functions[J]. IEEE Transactions on Reliability, 2014, 63(2): 555-566. doi: 10.1109/TR.2014.2315912
    陈维荣,钱清泉,李奇. 燃料电池混合动力列车的研究现状与发展趋势[J]. 西南交通大学学报,2009,44(1): 1-6. doi: 10.3969/j.issn.0258-2724.2009.01.001

    CHEN Weirong, QIAN Qingquan, LI Qi. Investigation status and development trend of hybrid power train based on fuel cell[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6. doi: 10.3969/j.issn.0258-2724.2009.01.001
    彭宇,刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报,2014,35(3): 481-495.

    PENG Yu, LIU Datong. Data-driven prognostics and health management:a review of recent advances[J]. Chinese Journal of Scientific Instrument, 2014, 35(3): 481-495.
    秦孔建,郝冬,侯永平,等. 车用PEMFC性能衰减影响因素的研究现状与展望[J]. 汽车工程学报,2013,3(4): 242-250. doi: 10.3969/j.issn.2095-1469.2013.04.02

    QIN Kongjian, HAO Dong, Hou Yongping, et al. Review and prospect of influence factors of vehicular fuel cell performance degradation[J]. Chinese Journal of Automotive Engineering, 2013, 3(4): 242-250. doi: 10.3969/j.issn.2095-1469.2013.04.02
    陈士忠. 加湿对PEMFC性能的影响[D]. 大连: 大连理工大学, 2007.
    KADYK T, HANKE-RAUSCHENBACH R, SUNDMACHER K. Nonlinear frequency response analysis of dehydration phenomena in polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(9): 7689-7701. doi: 10.1016/j.ijhydene.2012.01.148
    KIM S, HONG I. Effects of humidity and temperature on a proton exchange membrane fuel cell (PEMFC) stack[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(3): 357-364. doi: 10.1016/j.jiec.2008.01.007
    DARAB M, DAHLSTROM P K, THOMASSEN M S, et al. Dynamic electrochemical impedance spectroscopy of Pt/C-based membrane-electrode assemblies subjected to cycling protocols[J]. Journal of Power Sources, 2013, 242(22): 447-454.
    葛善海,衣宝廉,徐洪峰. 质子交换膜燃料电池水传递模型[J]. 化工学报,1999,50(1): 39-48. doi: 10.3321/j.issn:0438-1157.1999.01.006

    GE Shanhai, YI Baolian, XU Hongfeng. Model of water transport for PEMFC[J]. Journal of Chemical Industry and Engineering, 1999, 50(1): 39-48. doi: 10.3321/j.issn:0438-1157.1999.01.006
    CHO E A, KO J J, HA H Y, et al. Characteristics of the PEMFC repetitively brought to temperatures below 0 ℃[J]. Journal of the Electrochemical Society, 2003, 150(12): A1667-A1670. doi: 10.1149/1.1621877
    周伟,何华东. 浅谈质子交换膜燃料电池耐久性的研究现状[J]. 科技信息,2010(26): 126-127. doi: 10.3969/j.issn.1001-9960.2010.26.109

    ZHOU Wei, HE Huadong. Discussion on the current research situation of durability of proton exchange membrane fuel cell[J]. Technology Information, 2010(26): 126-127. doi: 10.3969/j.issn.1001-9960.2010.26.109
    SCHMITTINGER W, VAHIDI A. A review of the main parameters influencing long-term performance and durability of PEM fuel cells[J]. Journal of Power Sources, 2008, 180(1): 1-14. doi: 10.1016/j.jpowsour.2008.01.070
    BEZERRA C W B, ZHANG Lei, LIU Hansan, et al. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction[J]. Journal of Power Sources, 2007, 173(2): 891-908. doi: 10.1016/j.jpowsour.2007.08.028
    TISS F, CHOUIKH R, GUIZANI A. Dynamic modeling of a PEM fuel cell with temperature effects[J]. International Journal of Hydrogen Energy, 2013, 38(20): 8532-8541. doi: 10.1016/j.ijhydene.2012.09.101
    HOSSEINZADEH E, ROKNI M, RABBANI A, et al. Thermal and water management of low temperature proton exchange membrane fuel cell in fork-lift truck power system[J]. Applied Energy, 2013, 104(4): 434-444.
    TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of degradation in PEMFC caused by cell reversal during air starvation[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2323-2329. doi: 10.1016/j.ijhydene.2008.02.049
    梁栋,侯明,窦美玲,等. 质子交换膜燃料电池燃料饥饿现象[J]. 电源技术,2010,34(8): 767-770. doi: 10.3969/j.issn.1002-087X.2010.08.005
    GERARD M, POIROT-CROUVEZIER J P, HISSEL D, et al. Oxygen starvation effects on PEMFC durability[C]//ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. New York: ASME, 2010: 593-600.
    DOU Meiling, HOU Ming, LIANG Dong, et al. Behaviors of proton exchange membrane fuel cells under oxidant starvation[J]. Journal of Power Sources, 2011, 196(5): 2759-2762. doi: 10.1016/j.jpowsour.2010.11.005
    INABA M, KINUMOTO T, KIRIAKE M, et al. Gas crossover and membrane degradation in polymer electrolyte fuel cells[J]. Electrochimica Acta, 2006, 51(26): 5746-5753. doi: 10.1016/j.electacta.2006.03.008
    BLUNIER B, PUCCCI M, CIRRINCIONE G, et al. A scroll compressor with a high-performance induction motor drive for the air management of a PEMFC system for automotive applications[J]. IEEE Transactions on Industry Applications, 2008, 44(6): 1966-1976. doi: 10.1109/TIA.2008.2006304
    TANG Yong, YUAN Wei, PAN Minqiang, et al. Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application[J]. Applied Energy, 2011, 88(1): 68-76. doi: 10.1016/j.apenergy.2010.07.033
    唐田,杨代军,郑小亮,等. 动态工况条件下PEMFC 电堆内的水热行为[J]. 电源技术,2010(2): 152-156. doi: 10.3969/j.issn.1002-087X.2010.02.017

    Tang Tian, YANG Daijun, ZHENG Xiaoliang, et al. Hydrothermal behavior of PEMFC stack under dynamic drive profiles[J]. Chinese Journal of Power Sources, 2010(2): 152-156. doi: 10.3969/j.issn.1002-087X.2010.02.017
    YU Yi, LI Hui, WANG Haijiang, et al. A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes:Causes,consequences,and mitigation strategies[J]. Journal of Power Sources, 2012, 205(2): 10-23.
    王诚,黄俊,赵波,等. PEMFC 全车况性能衰减的研究进展[J]. 汽车安全与节能学报,2016,7(1): 86-93. doi: 10.3969/j.issn.1674-8484.2016.01.011

    WANG Cheng, HUANG Jun, ZHAO Bo, et al. Research progress of PEMFC degradation in full operating modes for electric vehicle[J]. Chinese Journal of Automotive Safety and Energy, 2016, 7(1): 86-93. doi: 10.3969/j.issn.1674-8484.2016.01.011
    詹志刚,吕志勇,黄永,等. 质子交换膜燃料电池冷启动及性能衰减研究[J]. 武汉理工大学学报,2011,33(1): 151-155. doi: 10.3963/j.issn.1671-4431.2011.01.034

    ZHAN Zhigang, LÜ Zhiyong, HUANG Yong, et al. Research on PEMFC start-up at subzero temperature and performance decay[J]. Journal of Wuhan University of Technology, 2011, 33(1): 151-155. doi: 10.3963/j.issn.1671-4431.2011.01.034
    BOUZAK K, PAIDAR M, MALIS J, et al. Influence of hydrogen contamination by mercury on the lifetime of the PEM-type fuel cell[J]. Electrochimica Acta, 2010, 56(2): 889-895. doi: 10.1016/j.electacta.2010.09.082
    JING Fenning, HOU Ming, SHI Weiyu, et al. The effect of ambient contamination on PEMFC performance[J]. Journal of Power Sources, 2007, 166(1): 172-176. doi: 10.1016/j.jpowsour.2006.12.103
    BIESDORF J, ZAMEL N, KURZ T. Influence of air contaminants on planar,self-breathing hydrogen PEM fuel cells in an outdoor environment[J]. Journal of Power Sources, 2014, 247(2): 339-345.
    FABER P, DREWNICK F, PISKE J, et al. Effects of atmospheric aerosol on the performance of environmentally sustainable passive air-breathing PEM fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17203-17208. doi: 10.1016/j.ijhydene.2012.08.132
    JIAO Kui, ZHOU Yibo, DU Qing, et al. Numerical simulations of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with various flow channel designs[J]. Applied Energy, 2013, 104(4): 21-41.
    黄敏,李兴虎,李欣. 质子交换膜燃料电池堆电气性能试验研究[J]. 电源技术,2007,31(5): 361-363. doi: 10.3969/j.issn.1002-087X.2007.05.005

    HUANG Min, LI Xinghu, LI Xin, et al. Experimental research on the electric performance of proton exchange membrane fuel cell stack[J]. Chinese Journal of Power Sources, 2007, 31(5): 361-363. doi: 10.3969/j.issn.1002-087X.2007.05.005
    鲜亮,肖建,贾俊波. 质子交换膜燃料电池交流阻抗谱实验研究[J]. 中国电机工程学报,2010,30(35): 101-106.

    XIAN Liang, XIAO Jian, JIA Junbo. An experimental study on AC impedance spectroscopy of proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2010, 30(35): 101-106.
    FCLAB Research Federation. 2014 IEEE PHM Data Challenge[EB/OL]. [2018-01-02]. http://eng.fclab.fr/ieee-phm-2014-%20data-challenge/.
    O'HAVRE R, CHA S W, PRINZ F B, et al. Fuel cell fundamentals[M]. [S.l.]: John Wiley & Sons, 2016: 249-269.
    卫东,郑东,褚磊民. 空冷型质子交换膜燃料电池堆最优性能输出控制[J]. 化工学报,2010,61(5): 1293-1300.

    WEI Dong, ZHENG Dong, CHU Leimin. Output control of optimal performance for air-cooling PEMFC stack[J]. CIESC Journal, 2010, 61(5): 1293-1300.
    ONANENA R, OUKHELLOU L, CANDUSSO D, et al. Fuel cells static and dynamic characterizations as tools for the estimation of their ageing time[J]. International Journal of Hydrogen Energy, 2011, 36(2): 1730-1739. doi: 10.1016/j.ijhydene.2010.10.064
    PEI Pucheng, CHEN Huicui. Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications:a review[J]. Applied Energy, 2014, 125(125): 60-75.
    JUNG Guobin, CHUANG Kaiyaun, JAO Tingchu, et al. Study of high voltage applied to the membrane electrode assemblies of proton exchange membrane fuel cells as an accelerated degradation technique[J]. Applied Energy, 2012, 100(8): 81-86.
    BAE S J, KIM S J, LEE J H, et al. Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells[J]. Applied Energy, 2014, 131: 48-55.
    PETRONE R, HISSEL D, PERA M C, et al. Accelerated stress test procedures for PEM fuel cells under actual load constraints:state-of-art and proposals[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12489-12505. doi: 10.1016/j.ijhydene.2015.07.026
    陈会翠,裴普成. 车用质子交换膜燃料电池经济寿命的研究[J]. 汽车工程,2015,37(9): 998-1004. doi: 10.3969/j.issn.1000-680X.2015.09.003

    CHEN Huicui, PEI Pucheng. A study on the economical lifetime of proton exchange membrane fuel cells for vehicles[J]. Automotive Engineering, 2015, 37(9): 998-1004. doi: 10.3969/j.issn.1000-680X.2015.09.003
    SUTHARSSAN T, MONTALVAO D, CHEN Y K, et al. A review on prognostics and health monitoring of proton exchange membrane fuel cell[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 440-450. doi: 10.1016/j.rser.2016.11.009
    JOUIN M, GOURIVEAU R, Hissel D, et al. Joint particle filters prognostics for PEMFC power prediction at constant current solicitation[J]. IEEE Transactions on Reliability, 2015, 65(1): 1-14.
    KIM T, KIM H, HA J, et al. A degenerated equivalent circuit model and hybrid prediction for state-of-health (SOH) of PEM fuel cell[C]//Prognostics and Health Management (PHM). [S.l.]: IEEE, 2014: 1-7.
    VIANNA W O L, MEDEIROS I P, AFLALO B S, et al. Proton exchange membrane fuel cells (PEMFC) impedance estimation using regression analysis[C]//Prognostics and Health Management (PHM). [S.l.]: IEEE, 2014: 1-8.
    CHEN Jiayu, ZHOU Dong, LYU Chuan, et al. A novel health indicator for PEMFC state of health estimation and remaining useful life prediction[J]. International Journal of Hydrogen Energy, 2017, 42(31): 20230-20238. doi: 10.1016/j.ijhydene.2017.05.241
    JOUIN M, GOURIVEAU R, HISSEL D, et al. Prognostics of PEM fuel cell in a particle filtering framework[J]. International Journal of Hydrogen Energy, 2014, 39(1): 481-494. doi: 10.1016/j.ijhydene.2013.10.054
    SI Xiaosheng, WANG Wenbin, HU Changhua, et al. Remaining useful life estimation −a review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14. doi: 10.1016/j.ejor.2010.11.018
    ZHANG Xian, PISU P. An unscented Kalman filter based approach for the health-monitoring and prognostics of a polymer electrolyte membrane fuel cell[C]//Annual Conference of the Prognostics and Health Management Society. [S.l.]: PHM Society, USA, 2012: 1-9.
    SAXENA A, CELAYA J, SAHA B, et al. On applying the prognostic performance metrics[C]// Annual Conference of the Prognostics and Health Management Society. San Diego: PHM Society, 2009: 1-16.
    BRESSEL M, HILARET M, HISSEL D, et al. Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2569-2577. doi: 10.1109/TIE.2016.2519328
    JOUIN M, GOURIVEAU R, HISSEL D, et al. Prognostics of proton exchange membrane fuel cell stack in a particle filtering framework including characterization disturbances and voltage recovery[C]//Prognostics and Health Management (PHM). [S.l.]: IEEE, 2014: 1-6.
    YIN Shen, XIE Xiaochen, LAM J, et al. An improved incremental learning approach for KPI prognosis of dynamic fuel cell system[J]. IEEE Transactions on Cybernetics, 2016, 46(12): 3135-3144. doi: 10.1109/TCYB.2015.2498194
    WU Yiming, BREAZ E, GAO Fei, et al. Prediction of PEMFC stack aging based on relevance vector machine[C]//Transportation Electrification Conference and Expo (ITEC). Dearborn: IEEE, 2015: 1-5.
    WU Yiming, BREAZ E, GAO Fei, et al. A modified relevance vector machine for PEM fuel-cell stack aging prediction[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2573-2581. doi: 10.1109/TIA.2016.2524402
    WU Yiming, BREAZ E, GAO Fei, et al. Nonlinear performance degradation prediction of proton exchange membrane fuel cells using relevance vector machine[J]. IEEE Transactions on Energy Conversion, 2016, 31(4): 1570-1582. doi: 10.1109/TEC.2016.2582531
    VURAL Y, INGHAM D B, POURKASHANIAN M. Performance prediction of a proton exchange membrane fuel cell using the ANFIS model[J]. International Journal of Hydrogen Energy, 2009, 34(22): 9181-9187. doi: 10.1016/j.ijhydene.2009.08.096
    MORANDO S, JEMEI S, GOURIVEAU R, et al. Fuel cells prognostics using echo state network[C]//Industrial Electronics Society. Vienna: IEEE, 2013: 1632-1637.
    MORANDO S, JEMEI S, GOURIVEAU R, et al. Fuel cells remaining useful lifetime forecasting using echo state network[C]//Vehicle Power and Propulsion Conference (VPPC). Coimbra: IEEE, 2014: 1-6.
    MORANDO S, JEMEI S, HISSEL D, et al. A novel method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network[J]. Mathematics and Computers in Simulation, 2017, 131: 283-294. doi: 10.1016/j.matcom.2015.06.009
    LI Zhongliang, JEMEI S, GOURIVEAU R, et al. Remaining useful life estimation for PEMFC in dynamic operating conditions[C]//Vehicle Power and Propulsion Conference (VPPC), 2016 IEEE. Hangzhou: IEEE, 2016: 1-6.
    XUE Xiaoling, HU Yanyan, QI Shuai. Remaining useful life estimation for proton exchange membrane fuel cell based on extreme learning machine[C]//Chinese Association of Automation (YAC), Youth Academic Annual Conference of IEEE. Wuhan: IEEE, 2017: 43-47.
    JAVED K, GOURIVEAU R, ZERHOUNI N, et al. Improving accuracy of long-term prognostics of PEMFC stack to estimate remaining useful life[C]//2015 IEEE International Conference on Industrial Technology (ICIT). Seville: IEEE, 2015: 1047-1052.
    JAVED K, GOURIVEAU R, ZERHOUNI N, et al. Data-driven prognostics of proton exchange membrane fuel cell stack with constraint based summation-wavelet extreme learning machine[C]//6th International Conference on Fundamentals and Development of Fuel Cells. [S.l.]: FDFC, 2015: 1-8.
    JAVED K, GOURIVEAU R, ZERHOUNI N, et al. PEM fuel cell prognostics under variable load: a data-driven ensemble with new incremental learning[C]//Control Decision and Information Technologies, 2016 International Conference on IEEE. [S.l.]: IEEE, 2016: 252-257.
    LIU Qiaoqiao, LI Jianxun.State of health estimation combining robust deep feature learning with support vector regression[C]//IEEE 2015 34th Chinese Control Conference. Hangzhou: IEEE, 2015: 6207-6212.
    WANG M, TSAI H H. Fuel cell fault forecasting system using grey and extension theories[J]. IET Renewable Power Generation, 2012, 6(6): 373-380. doi: 10.1049/iet-rpg.2012.0147
    LI Qi, GAO Zhanbao. A similarity-based prognostics approach for full cells state of health[C]//Prognostics and System Health Management Conference. [S.l.]: IEEE, 2014: 279-283.
    SAXENA A, CELAYA J, SAHA B, et al. Metrics for offline evaluation of prognostic performance[J]. International Journal of Prognostics and Health Management, 2010, 1(1): 4-23.
    SAXENA A, CELAYA J, SAHA B, et al. Evaluating algorithm performance metrics tailored for prognostics[C]//2009 IEEE Aerospace Conference. [S.l.]: IEEE, 2009: 1-13.
    SAHA B, GOEBEL K, CHRISTOPHERSEN J. Comparison of prognostic algorithms for estimating remaining useful life of batteries[J]. Transactions of the Institute of Measurement and Control, 2009, 31(3/4): 293-308. doi: 10.1177/0142331208092030
    SAXENA A, CELAYA J, SAHA B, et al. Evaluating prognostics performance for algorithms incorporating uncertainty estimates[C]//2010 IEEE Aerospace Conference. [S.l.]: IEEE, 2010: 1-11.
    BARALDI P, MANGILI F, ZIO E. Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data[J]. Reliability Engineering & System Safety, 2013, 112(2): 94-10.
    HOCHSTEIN A, AHN H I, LEUNG Y T, et al. Switching vector autoregressive models with higher-order regime dynamics application to prognostics and health management[C]//IEEE Conference on Prognostics and Health Management (PHM). [S.l.]: IEEE, 2015: 1-10.
    JOUIN M, R GOURIVEAU, HISSEL D, et al. PEMFC aging modeling for prognostics and health assessment[J]. IFAC-Papers on Line, 2015, 48(21): 790-795. doi: 10.1016/j.ifacol.2015.09.623
    ZHONG Z, ZHU X, CAO G, et al. A hybrid multi-variable experimental model for a PEMFC[J]. Journal of Power Sources, 2007, 164(2): 746-751. doi: 10.1016/j.jpowsour.2006.11.030
    PATHAPATI P R, XUE X, TANG J. A new dynamic model for predicting transient phenomena in a PEM fuel cell system[J]. Renewable Energy, 2014, 30(1): 1-22.
    MCKAY D, SIEGEL J, OTT W, et al. Parameterization and prediction of temporal fuel cell voltage behavior during flooding and drying conditions[J]. Journal of Power Sources, 2008, 178(1): 207-222. doi: 10.1016/j.jpowsour.2007.12.031
    BUONOCUNTO G, SPAGNUOLO G, ZAMBONI W. A Kalman filter based approach to PEM fuel cell fault detection[C]//2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). Edinburgh: IEEE, 2017: 934-93.
    RUSSO L, SORRENTINO M, POLVERINO P, et al. Application of Buckingham π theorem for scaling-up oriented fast modelling of proton exchange membrane fuel cell impedance[J]. Journal of Power Sources, 2017, 353: 277-286. doi: 10.1016/j.jpowsour.2017.03.116
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(978) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return