• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
WEN Tao, XIA Wentao, ZHOU Xu, LONG Zhiqiang. Data-Driven Parameter Tuning for Maglev Train Levitation System[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 506-513. doi: 10.3969/j.issn.0258-2724.20210792
Citation: WEN Tao, XIA Wentao, ZHOU Xu, LONG Zhiqiang. Data-Driven Parameter Tuning for Maglev Train Levitation System[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 506-513. doi: 10.3969/j.issn.0258-2724.20210792

Data-Driven Parameter Tuning for Maglev Train Levitation System

doi: 10.3969/j.issn.0258-2724.20210792
  • Received Date: 12 Oct 2021
  • Rev Recd Date: 06 Jan 2022
  • Publish Date: 14 Jan 2022
  • In order to solve the controller parameter tuning problem caused by the complex nonlinearity of the maglev train levitation system model, a data-driven fast parameter tuning method for the maglev train levitation system is proposed, which is based on only the input and output data of a single levitation tuning of the levitation system. First, the open-loop instability and complex nonlinearity of the levitation system are analyzed by modeling of the maglev train levitation system. Aiming at the problem of determining the reference model in the virtual reference feedback tuning method, estimation of the closed-loop response is then used to realize the data-driven controller parameter tuning. Considering that the interference noise in the data will affect the tuning of controller parameters, a data noise suppression method of maglev system based on signal projection is proposed. Finally, taking a single-rail levitation system for example, the effectiveness of this data-driven parameter tuning method for maglev train levitation system was verified through the single-rail levitation experiment. The results show that the open-loop instability and complex nonlinearity of the suspension system will bring great difficulties to the rapid adjustment of parameters; the noise suppression method based on signal projection can reduce the variance of noise data by 54.1%; and the parameter tuning method based on data driven technique can quickly set the controller parameters of the suspension system. Compared with the PID feedback control system with only coarse tuning under the initial conditions, the step response overshoot of the system after parameter tuning is reduced by 72.0%, the square error integral (ISE) is reduced by 79.8%, and the absolute error integral (IAE) is reduced by 54.5%.

     

  • loading
  • [1]
    FORMENTIN S, VAN HEUSDEN K, KARIMI A. A comparison of model-based and data-driven controller tuning[J]. International Journal of Adaptive Control and Signal Processing, 2014, 28(10): 882-897. doi: 10.1002/acs.2415
    [2]
    HJALMARSSON H, GEVERS M, GUNNARSSON S, et al. Iterative feedback tuning: theory and applications[J]. IEEE Control Systems Magazine, 1998, 18(4): 26-41. doi: 10.1109/37.710876
    [3]
    RADAC M B, PRECUP R E, PETRIU E M, et al. Iterative data-driven controller tuning with actuator constraints and reduced sensitivity[J]. Journal of Aerospace Information Systems, 2014, 11(9): 551-564. doi: 10.2514/1.I010154
    [4]
    CAMPI M C, LECCHINI A, SAVARESI S M. Virtual reference feedback tuning:a direct method for the design of feedback controllers[J]. Automatica, 2002, 38(8): 1337-1346. doi: 10.1016/S0005-1098(02)00032-8
    [5]
    CAMPESTRINI L, ECKHARD D, GEVERS M, et al. Virtual reference feedback tuning for non-minimum phase plants[J]. Automatica, 2011, 47(8): 1778-1784. doi: 10.1016/j.automatica.2011.04.002
    [6]
    SOMA S, KANEKO O, FUJII T. A new approach to parameter tuning of controllers by using one-shot experimental data-a proposal of fictitious reference iterative tuning[J]. Transactions of the Institute of Systems, Control and Information Engineers, 2004, 17(12): 528-536. doi: 10.5687/iscie.17.528
    [7]
    VAN HEUSDEN K, KARIMI A, BONVIN D. Data-driven model reference control with asymptotically guaranteed stability[J]. International Journal of Adaptive Control and Signal Processing, 2011, 25(4): 331-351. doi: 10.1002/acs.1212
    [8]
    SAKATOKU T, YUBAI K, YASHIRO D, et al. Proposal of Estimation of Closed-loop Response Using Input and Output Data[C]//2020 International Automatic Control Conference (CACS). Taiwan: IEEE, 2020: 1-5
    [9]
    CHILUKA S K, AMBATI S R, SEEPANA M M, et al. A novel robust Virtual Reference Feedback Tuning approach for minimum and non-minimum phase systems[J]. ISA Transactions, 2021, 115: 163-191. doi: 10.1016/j.isatra.2021.01.018
    [10]
    HORI T, YUBAI K, YASHIRO D, et al. Data-driven controller tuning for sensitivity minimization[C]//2016 International Conference on Advanced Mechatronic Systems (ICAMechS). Melbourne: IEEE, 2016: 132-137.
    [11]
    MATSUI Y, AYANO H, MASUDA S, et al. A controller tuning method based on finite impulse response estimation using closed-loop response data[J]. IEEJ Transactions on Electronics, Information and Systems, 2019, 139(8): 858-865. doi: 10.1541/ieejeiss.139.858
    [12]
    KOSAKA M, KOSAKA A, KOSAKA M. Virtual time-response based iterative gain evaluation and redesign[J]. IFAC-PapersOnLine, 2020, 53(2): 3946-3952.
    [13]
    龙志强,郝阿明,常文森. 考虑轨道周期性不平顺的磁浮列车悬浮控制系统设计[J]. 国防科技大学学报,2003,25(2): 84-89.

    LONG Zhiqiang, HAO Aming, CHANG Wensen. Suspension controller design of maglev train considering the rail track periodical irregularity[J]. Journal of National University of Defense Technology, 2003, 25(2): 84-89.
    [14]
    李云钢,常文森. 磁浮列车悬浮系统的串级控制[J]. 自动化学报,1999,25(2): 247-251.

    LI Yungang, CHANG Wensen. Cascade control of an Ems maglev vehicle's levitation control system[J]. Acta Automatica Sinica, 1999, 25(2): 247-251.
    [15]
    哀微,朱学峰. 在线VRFT数据驱动控制方法及其仿真研究[J]. 计算机应用研究,2011,28(4): 1254-1256,1265. doi: 10.3969/j.issn.1001-3695.2011.04.014

    AI Wei, ZHU Xuefeng. Research on online VRFT data-driven control method and simulation[J]. Application Research of Computers, 2011, 28(4): 1254-1256,1265. doi: 10.3969/j.issn.1001-3695.2011.04.014
    [16]
    CHUPIN T J E. Data-driven attitude control design for multirotor UAVs[D]. Milan: Polytechnic University of Milan, 2017.
    [17]
    FORMENTIN S, COLOGNI A, BELLOLI D, et al. Fast tuning of cascade control systems[J]. IFAC Proceedings Volumes, 2011, 44(1): 10243-10248. doi: 10.3182/20110828-6-IT-1002.02761
    [18]
    SAKATOKU T, YUBAI K, YASHIRO D, et al. Data-driven controller tuning with closed-loop response estimation[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16(10): 1397-1406. doi: 10.1002/tee.23436
    [19]
    CARE A, TORRICELLI F, CAMPI M C, et al. A toolbox for virtual reference feedback tuning (VRFT)[C]//2019 18th European Control Conference (ECC). Naples: IEEE, 2019: 4252-4257
    [20]
    FUJIMOTO Y. Estimated response iterative tuning with signal projection[J]. IFAC Journal of Systems and Control, 2022, 19: 100179.1-100179.8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views(208) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return