Citation: | ZHANG Lei, LI Bing, ZHU Baolong, LUO Bo. Loading and Unloading Mechanical Properties and Energy Evolution Mechanism of Red-Bed Mudstone[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 592-602, 612. doi: 10.3969/j.issn.0258-2724.20210387 |
To study the mechanical properties and energy evolution law of red-bed mudstone, five different confining pressure gradients (200, 250, 300, 350, and 400 kPa) and different rate stress paths between the axial and confining pressures are used to perform indoor cyclic loading and unloading tests, taking red-bed mudstone in the Suining area, Sichuan Province, as an example. The effects of the confining pressure on the mechanical properties, total strain energy density, elastic strain energy density, and dissipated energy density of the red-bedded mudstone and the evolution law between the stress-strain and energy are obtained. The results show that the total energy density, elastic strain energy density, and dissipated energy density of the axial stress input generally increase first and then decrease in a normal distribution from the initial loading and unloading to the end of the test. During the pre-peak stage, the difference between the elastic strain energy density and the dissipated energy density increases with increasing number of loading and unloading cycles. The confining effect of the confining pressure improves the bearing capacity of the samples, and the total energy density, elastic strain energy density, and dissipated energy density increase with increasing confining pressure. During the post-peak stage, when the confining pressure ≤ 300 kPa, the dissipated energy density is lower than the elastic strain energy density; meanwhile, when the confining pressure > 300 kPa, the dissipated energy density is higher than the elastic strain energy density, indicating that increasing the confining pressure further inhibits the release of elastic strain energy density after failure. Under the same confining pressure, the compressive strength and elastic strain energy density in the dry and saturated states are negatively correlated with the increase in the number of wet-dry cycles. For the same number of dry and wet cycles, the compressive strength and elastic strain energy density in the dry state are higher than those in the saturated state, showing a positive correlation.
[1] |
谢和平,彭瑞东,鞠杨,等. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报,2005,24(15): 2603-2608. doi: 10.3321/j.issn:1000-6915.2005.15.001
XIE Heping, PENG Ruidong, JU Yang, et al. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2603-2608. doi: 10.3321/j.issn:1000-6915.2005.15.001
|
[2] |
谢和平,彭瑞东,鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报,2004,23(21): 3565-3570. doi: 10.3321/j.issn:1000-6915.2004.21.001
XIE Heping, PENG Ruidong, JU Yang. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565-3570. doi: 10.3321/j.issn:1000-6915.2004.21.001
|
[3] |
尤明庆,华安增. 岩石试样破坏过程的能量分析[J]. 岩石力学与工程学报,2002,21(6): 778-781. doi: 10.3321/j.issn:1000-6915.2002.06.004
YOU Mingqing, HUA Anzeng. Energy analysis on failure process of rock specimens[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 778-781. doi: 10.3321/j.issn:1000-6915.2002.06.004
|
[4] |
谢和平,鞠杨,黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,2005,24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
|
[5] |
GAZIEV E. Rupture energy evaluation for brittle materials[J]. International Journal of Solids and Structures, 2001, 38(42/43): 7681-7690.
|
[6] |
杨永明,鞠杨,陈佳亮,等. 三轴应力下致密砂岩的裂纹发育特征与能量机制[J]. 岩石力学与工程学报,2014,33(4): 691-698. doi: 10.13722/j.cnki.jrme.2014.04.005
YANG Yongming, JU Yang, CHEN Jialiang, et al. Cracks development features and energy mechanism of dense sandstone subjected to triaxial stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 691-698. doi: 10.13722/j.cnki.jrme.2014.04.005
|
[7] |
MUNOZ H, TAHERI A, CHANDA E K. Rock drilling performance evaluation by an energy dissipation based rock brittleness index[J]. Rock Mechanics and Rock Engineering, 2016, 49(8): 3343-3355. doi: 10.1007/s00603-016-0986-0
|
[8] |
田勇,俞然刚. 不同围压下灰岩三轴压缩过程能量分析[J]. 岩土力学,2014,35(1): 118-122,129. doi: 10.16285/j.rsm.2014.01.019
TIAN Yong, YU Rangang. Energy analysis of limestone during triaxial compression under different confining pressures[J]. Rock and Soil Mechanics, 2014, 35(1): 118-122,129. doi: 10.16285/j.rsm.2014.01.019
|
[9] |
黄达,谭清,黄润秋. 高应力强卸荷条件下大理岩损伤破裂的应变能转化过程机制研究[J]. 岩石力学与工程学报,2012,31(12): 2483-2493. doi: 10.3969/j.issn.1000-6915.2012.12.012
HUANG Da, TAN Qing, HUANG Runqiu. Mechanism of strain energy conversion process for marble damage and fracture under high stress and rapid unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2483-2493. doi: 10.3969/j.issn.1000-6915.2012.12.012
|
[10] |
张黎明,高速,王在泉,等. 大理岩加卸荷破坏过程的能量演化特征分析[J]. 岩石力学与工程学报,2013,32(8): 1572-1578.
ZHANG Liming, GAO Su, WANG Zaiquan, et al. Analysis of marble failure energy evolution under loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1572-1578.
|
[11] |
MENG Q B, ZHANG M W, ZHANG Z Z, et al. Experimental research on rock energy evolution under uniaxial cyclic loading and unloading compression[J]. Geotechnical Testing Journal, 2018, 41(4): 717-729.
|
[12] |
MENG Q B, ZHANG M W, HAN L J, et al. Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3873-3886. doi: 10.1007/s00603-016-1077-y
|
[13] |
王向宇,周宏伟,钟江城,等. 三轴循环加卸载下深部煤体损伤的能量演化和渗透特性研究[J]. 岩石力学与工程学报,2018,37(12): 2676-2684. doi: 10.13722/j.cnki.jrme.2018.0697
WANG Xiangyu, ZHOU Hongwei, ZHONG Jiangcheng, et al. Study on energy evolution and permeability characteristics of deep coal damage under triaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2676-2684. doi: 10.13722/j.cnki.jrme.2018.0697
|
[14] |
杨小彬,程虹铭,吕嘉琦,等. 三轴循环荷载下砂岩损伤耗能比演化特征研究[J]. 岩土力学,2019,40(10): 3751-3757,3766. doi: 10.16285/j.rsm.2018.2166
YANG Xiaobin, CHENG Hongming, LÜ Jiaqi, et al. Energy consumption ratio evolution law of sandstones under triaxial cyclic loading[J]. Rock and Soil Mechanics, 2019, 40(10): 3751-3757,3766. doi: 10.16285/j.rsm.2018.2166
|
[15] |
王晓强,姚华彦,代领,等. 皖南红层软岩崩解特性试验分析[J]. 地下空间与工程学报,2021,17(3): 683-691.
WANG Xiaoqiang, YAO Huayan, DAI Ling, et al. Experimental study on slaking characteristics of red-bed soft rock in southern Anhui Province[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(3): 683-691.
|
[16] |
纪宇,梁庆国,郭俊彦,等. 红层软岩地区高速铁路深路堑基底变形规律研究[J]. 铁道科学与工程学报,2021,18(3): 572-580. doi: 10.19713/j.cnki.43-1423/u.T20200425
JI Yu, LIANG Qingguo, GUO Junyan, et al. Study on deformation law of deep foundation of high speed railway in red layer soft rock area[J]. Journal of Railway Science and Engineering, 2021, 18(3): 572-580. doi: 10.19713/j.cnki.43-1423/u.T20200425
|
[17] |
李安润,邓辉,王小雪,等. 饱水-失水循环条件下红层泥岩蠕变特性及本构模型研究[J]. 工程地质学报,2021,29(3): 843-850. doi: 10.13544/j.cnki.jeg.2020-098
LI Anrun, DENG Hui, WANG Xiaoxue, et al. Research on creep characteristics and constitutive model of red bed mudstone under saturated-dehydrated cycle[J]. Journal of Engineering Geology, 2021, 29(3): 843-850. doi: 10.13544/j.cnki.jeg.2020-098
|
[18] |
周其健,马德翠,邓荣贵,等. 地热系统作用下红层软岩力学性能试验研究[J]. 岩土力学,2020,41(10): 3333-3342. doi: 10.16285/j.rsm.2020.0035
ZHOU Qijian, MA Decui, DENG Ronggui, et al. Experimental study on mechanical properties of red-layer soft rock in geothermal systems[J]. Rock and Soil Mechanics, 2020, 41(10): 3333-3342. doi: 10.16285/j.rsm.2020.0035
|
[19] |
余云燕,罗崇亮,包得祥,等. 兰州地区红层泥岩物理力学特性试验[J]. 兰州交通大学学报,2019,38(5): 1-6. doi: 10.3969/j.issn.1001-4373.2019.05.001
YU Yunyan, LUO Chongliang, BAO Dexiang, et al. Experimental study on physical and mechanical properties of red mudstone in Lanzhou area[J]. Journal of Lanzhou Jiaotong University, 2019, 38(5): 1-6. doi: 10.3969/j.issn.1001-4373.2019.05.001
|
[20] |
徐颖,李成杰,郑强强,等. 循环加卸载下泥岩能量演化与损伤特性分析[J]. 岩石力学与工程学报,2019,38(10): 2084-2091. doi: 10.13722/j.cnki.jrme.2019.0153
XU Ying, LI Chengjie, ZHENG Qiangqiang, et al. Analysis of energy evolution and damage characteristics of mudstone under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2084-2091. doi: 10.13722/j.cnki.jrme.2019.0153
|
[21] |
秦涛,段燕伟,刘志,等. 砂岩循环加卸载过程能量的演化与损伤特性[J]. 黑龙江科技大学学报,2020,30(1): 8-15. doi: 10.3969/j.issn.2095-7262.2020.01.002
QIN Tao, DUAN Yanwei, LIU Zhi, et al. Energy evolution and damage characteristics of sandstone under cyclic loading and unloading[J]. Journal of Heilongjiang University of Science and Technology, 2020, 30(1): 8-15. doi: 10.3969/j.issn.2095-7262.2020.01.002
|
[22] |
孟庆彬,王从凯,黄炳香,等. 三轴循环加卸载条件下岩石能量演化及分配规律[J]. 岩石力学与工程学报,2020,39(10): 2047-2059. doi: 10.13722/j.cnki.jrme.2020.0208
MENG Qingbin, WANG Congkai, HUANG Bingxiang, et al. Rock energy evolution and distribution law under triaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2047-2059. doi: 10.13722/j.cnki.jrme.2020.0208
|
[23] |
陈纪昌. 库区红层泥岩水化特性及干湿循环作用下的渐进损伤研究[J]. 中国农村水利水电,2021(3): 143-147,152. doi: 10.3969/j.issn.1007-2284.2021.03.028
CHEN Jichang. Research on the hydration characteristics and progressive damage of red bed mudstone under dry-wet cycle in reservoir areas[J]. China Rural Water and Hydropower, 2021(3): 143-147,152. doi: 10.3969/j.issn.1007-2284.2021.03.028
|
[24] |
国家质量技术监督局, 中华人民共和国住建部. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版社, 2013.
|