• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 28 Issue 6
Dec.  2015
Turn off MathJax
Article Contents
YANG Junyi, CHEN Jianbing, LI Jie. Probability Density Evolution Analysis of Nonlinear Seismic Response of Structures with Random Parameters Following Different Distributions[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1047-1054. doi: 10.3969/j.issn.0258-2724.2015.06.010
Citation: YANG Junyi, CHEN Jianbing, LI Jie. Probability Density Evolution Analysis of Nonlinear Seismic Response of Structures with Random Parameters Following Different Distributions[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1047-1054. doi: 10.3969/j.issn.0258-2724.2015.06.010

Probability Density Evolution Analysis of Nonlinear Seismic Response of Structures with Random Parameters Following Different Distributions

doi: 10.3969/j.issn.0258-2724.2015.06.010
  • Received Date: 30 Jul 2014
  • Publish Date: 25 Dec 2015
  • The randomness of structural parameters should be reasonably taken into account to assess the global performance of complex structures subjected to seismic actions. In the present paper, incorporating the generalized F-discrepancy (GF-discrepancy) based optimal point selection strategy and the probability density evolution method (PDEM), the effects of different distribution types and different coefficients of variation of the random parameters on the response of a multi-degree-of-freedom nonlinear structure with tens of random parameters are studied. The results show that the difference between the second-order moments of the structural responses with different types of distributions could be in the order of 30%. When the coefficients of variation of the basic parameters are either very small or fairly large, the effects of different types of distributions on the second-order moments of responses are relatively large, but in an opposite tendency. Therefore, there exists a range of the coefficients of variation in which the different types of distributions have little effects on the second-order moments of responses. However, the probability density functions (PDFs) of the responses are always affected considerably, even may change qualitatively by the types of distributions of the random parameters.

     

  • loading
  • 李杰,李国强. 地震工程学导论 [M]. 北京:地震出版社,1992: 3.
    CHEN Jianbing, LI Jie. Stochastic seismic response analysis of structures exhibiting high nonlinearity[J]. Computers and Structures, 2010, 88(7): 395-412.
    李杰. 随机结构系统:分析与建模 [M]. 北京:科学出版社,1996: 4.
    SHINOZUKA M. Monte Carlo solution of structural dynamics[J]. Computers and Structures, 1972, 2(5): 855-874.
    LIU W K, BELYTSCHKO T, MANI A. Probabilistic finite element methods for nonlinear structural dynamics[J]. Comput. Methods Appl. Mech. Eng., 1986, 56: 61-81.
    KLEIBER M, HIEN T D. The stochastic finite element method: basic perturbation technique and computer implementation[M]. New York: Wiley, 1992: 1-200.
    WU Cunli, MA Xiaoping, FANG Tong. A complementary note on Gegenbauer polynomial approximation for random response problem of stochastic structure[J]. Probabilistic Engineering Mechanics, 2006, 21(4): 410-419.
    GOLLER B, PRADLWARTER H J, SCHUELLER G I. Reliability assessment in structural dynamics[J]. Journal of Sound and Vibration, 2013, 332: 2488-2499.
    ZHAO Yangang, IDOTA H. Response uncertainty and time-variant reliability analysis for hysteretic MDF structures[J]. Earthquake Engineering and Structural Dynamics, 1999, 28: 1187-1213.
    CHEN Jianbing, LI Jie. Development-process of nonlinearity: based reliability evaluation of structures[J]. Probabilistic Engineering Mechanics, 2007, 22(3): 267-275.
    朱位秋. 随机振动 [M]. 北京:科学出版社,1992: 223-227.
    LI Jie, CHEN Jianbing. Stochastic dynamics of structures[M]. : John Wiley and Sons, 2009: 191-284.
    陈建兵,李杰. 结构随机地震反应与可靠度的概率密度演化分析研究进展[J]. 工程力学,2014,31(4): 1-10. CHEN Jianbing, LI Jie. Probability density evolution method for stochastic seismic response and reliability of structures[J]. Engineering Mechanics, 2014, 31(4): 1-10.
    王华琪. 混凝土工程质量抽样检验技术研究 [D]. 上海:同济大学,2006.
    CHEN Jianbing, LI Jie. A note on the principle of preservation of probability and probability density evolution equation[J]. Probabilistic Engineering Mechanics, 2009, 24(1): 51-59.
    LI Jie, CHEN Jianbing, SUN Weiling, et al. Advances of the probability density evolution method for nonlinear stochastic systems[J]. Probabilistic Engineering Mechanics, 2012, 28: 132-142.
    XU Jun, CHEN Jianbing, LI Jie. Probability density evolution analysis of engineering structures via cubature points[J]. Computational Mechanics, 2012, 50(1):135-156.
    陈建兵,张圣涵. 非均布随机参数结构非线性响应的概率密度演化[J]. 力学学报,2014,46(1): 136-144. CHEN Jianbing, ZHANG Shenghan. Probability density evolution analysis of nonlinear response structures with non-uniform random parameters[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 136-144.
    CHEN Jianbing, ZHANG Shenghan. Improving point selection in cubature by a new discrepancy[J]. SIAM Journal on Scientific Computing, 2013, 35(5): A2121-A2149.
    MA F, ZHANG H, BOCKSTEDTE A, et al. Parameter analysis of the differential model of hysteresis[J]. Journal of Applied Mechanics, 2004, 71(3): 342-349.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(878) PDF downloads(321) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return