Citation: | YANG Tianhui, LI Wenxin, XIN Ying. Principle and Application Prospective of Novel Superconducting Energy Conversion/Storage Device[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 913-921. doi: 10.3969/j.issn.0258-2724.20220125 |
Based on the newly discovered interaction behavior between a permanent magnet and a superconducting coil, a novel superconducting energy conversion/storage device is proposed with a structure of a permanent magnet and a closed superconducting coil. Several groups of experiments with different trajectories and speeds of the magnet are carried out. When the magnet is at different positions, the interaction force between the magnet and the closed superconducting coil and the current in the superconducting coil are measured and analyzed to validate the principle of the proposed device and clarify the function properties. When the magnet is stationary, the current attenuation in the coil over time is measured to obtain the operating loss characteristics of the device. Results show that the proposed device can realize the conversion from mechanical energy to electromagnetic energy to mechanical energy without additional generator/motor, and the energy conversion efficiency can reach more than 90%. This indicates that the proposed device is promising in applications such as regenerative braking of urban vehicles and electromagnetic aircraft ejection.
[1] |
HUGGINS R A. Energy storage: fundamentals, materials and applications[M]. 2nd Edition. Cham: Springer , 2015.
|
[2] |
吴皓文,王军,龚迎莉,等. 储能技术发展现状及应用前景分析[J]. 电力学报,2021,36(5): 434-443. doi: 10.13357/j.dlxb.2021.052
WU Haowen, WANG Jun, GONG Yingli, et al. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 2021, 36(5): 434-443. doi: 10.13357/j.dlxb.2021.052
|
[3] |
BUCKLES W, HASSENZAHL W V. Superconducting magnetic energy storage[J]. IEEE Power Engineering Review, 2000, 20(5): 16-20. doi: 10.1109/39.841345
|
[4] |
TIXADOR P. Superconducting magnetic energy storage: status and perspective[C]//IEEE CSC & ESAS European Superconductivity News Forum. [S.l.]: IEEE, 2008: 1-14.
|
[5] |
MUKHERJEE P, RAO V V. Superconducting magnetic energy storage for stabilizing grid integrated with wind power generation systems[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(2): 400-411. doi: 10.1007/s40565-018-0460-y
|
[6] |
郭文勇,张京业,张志丰,等. 超导储能系统的研究现状及应用前景[J]. 科技导报,2016,34(23): 68-80.
GUO Wenyong, ZHANG Jingye, ZHANG Zhifeng, et al. Current research status and application prospect of SMES[J]. Science & Technology Review, 2016, 34(23): 68-80.
|
[7] |
邱傅杰,徐克西,盛培龙. 小型飞轮储能系统高温超导磁悬浮轴承[J]. 电工技术学报,2014,29(1): 181-186. doi: 10.3969/j.issn.1000-6753.2014.01.025
QIU Fujie, XU Kexi, SHENG Peilong. Small-scale flywheel energy storage system equipped with high temperature superconducting magnetic bearing[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 181-186. doi: 10.3969/j.issn.1000-6753.2014.01.025
|
[8] |
李万杰,张国民,王新文,等. 飞轮储能系统用超导电磁混合磁悬浮轴承设计[J]. 电工技术学报,2020,35(增1): 10-18. doi: 10.19595/j.cnki.1000-6753.tces.l80394
LI Wanjie, ZHANG Guomin, WANG Xinwen, et al. Integration design of high-temperature superconducting bearing and electromagnetic thrust bearing for flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 10-18. doi: 10.19595/j.cnki.1000-6753.tces.l80394
|
[9] |
戴兴建,魏鲲鹏,张小章,等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术,2018,7(5): 765-782. doi: 10.12028/j.issn.2095-4239.2018.0083
DAI Xingjian, WEI Kunpeng, ZHANG Xiaozhang, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782. doi: 10.12028/j.issn.2095-4239.2018.0083
|
[10] |
XU K X, WU D J, JIAO Y L, et al. A fully superconducting bearing system for flywheel applications[J]. Superconductor Science and Technology, 2016, 29(6): 064001.1-064001.8.
|
[11] |
IBRAHIM H, ILINCA A, PERRON J. Energy storage systems: characteristics and comparisons[J]. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1221-1250. doi: 10.1016/j.rser.2007.01.023
|
[12] |
WOLSKY A M. The status and prospects for flywheels and SMES that incorporate HTS[J]. Physica C: Superconductivity, 2002, 372/373/374/375/376: 1495-1499.
|
[13] |
XIN Y, LI W X, DONG Q, et al. Superconductors and Lenz’s law[J]. Superconductor Science and Technology, 2020, 33(5): 055004.1-055004.9.
|
[14] |
HOLESINGER T G, BINGERT J F, TEPLITSKY M, et al. Spatial variations in composition in high-critical-current-density Bi-2223 tapes[J]. Journal of Materials Research, 2000, 15(2): 285-295. doi: 10.1557/JMR.2000.0047
|
[15] |
SHALABY M S, HASHEM H M, HAMMAD T R, et al. Higher critical current density achieved in Bi-2223 high-Tc superconductors[J]. Journal of Radiation Research and Applied Sciences, 2016, 9(3): 345-351. doi: 10.1016/j.jrras.2016.04.001
|
[16] |
XU X N, LU D W, YUAN G Q, et al. Studies of strong magnetic field produced by permanent magnet array for magnetic refrigeration[J]. Journal of Applied Physics, 2004, 95(11): 6302-6307. doi: 10.1063/1.1713046
|
[17] |
包小倩,毛华云,高学绪. 镝扩渗对烧结钕铁硼磁体组织结构与磁性能的影响[J]. 北京科技大学学报,2014,36(9): 1215-1221. doi: 10.13374/j.issn1001-053x.2014.09.013
BAO Xiaoqian, MAO Huayun, GAO Xuexu. Microstructure and magnetic properties of sintered Nd-Fe-B magnets by Dy diffusion treatment[J]. Journal of University of Science and Technology Beijing, 2014, 36(9): 1215-1221. doi: 10.13374/j.issn1001-053x.2014.09.013
|
[18] |
LI W X, YANG T H, XIN Y. Novel methods for measuring the inductance of superconducting coils and material resistivity[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1501808.1-1501808.8.
|
[19] |
赵凯华. 磁单极子与超导线圈问题的困惑[J]. 物理教学,2009,31(7): 2-4.
|
[20] |
LI W X, YANG T H, XIN Y. Experimental study of electromagnetic interaction between a permanent magnet and an HTS coil[J]. Journal of Superconductivity and Novel Magnetism, 2021, 34(8): 2047-2057. doi: 10.1007/s10948-021-05917-8
|
[21] |
GONZÁLEZ-GIL A, PALACIN R, BATTY P. Sustainable urban rail systems: strategies and technologies for optimal management of regenerative braking energy[J]. Energy Conversion and Management, 2013, 75: 374-388. doi: 10.1016/j.enconman.2013.06.039
|
[22] |
OGASA M. Energy saving and environmental measures in railway technologies: example with hybrid electric railway vehicles[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2008, 3(1): 15-20. doi: 10.1002/tee.20227
|
[23] |
SHIMADA M, OISHI R, ARAKI D, et al. Energy storage system for effective use of regenerative energy in electrified railways[J]. Hitachi Review, 2010, 59(1): 33-38.
|
[24] |
KUMAR E A. Hydraulic regenerative braking system[J]. International Journal of Scientific and Engineering Research, 2012, 3(4): 1-12.
|
[25] |
马茜,郭昕,罗培,等. 一种基于超级电容储能系统的新型铁路功率调节器[J]. 电工技术学报,2018,33(6): 1208-1218. doi: 10.19595/j.cnki.1000-6753.tces.161986
MA Qian, GUO Xin, LUO Pei, et al. A novel railway power conditioner based on super capacitor energy storage system[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1208-1218. doi: 10.19595/j.cnki.1000-6753.tces.161986
|
[26] |
霍利杰,杨轶成,孙婷,等. 地铁再生制动能量分散回馈多模控制研究[J]. 电气技术,2020,21(3): 37-43. doi: 10.3969/j.issn.1673-3800.2020.03.011
HUO Lijie, YANG Yicheng, SUN Ting, et al. Research on multi-mode control of energy regenerative feedback of regenerative braking in metro[J]. Electrical Engineering, 2020, 21(3): 37-43. doi: 10.3969/j.issn.1673-3800.2020.03.011
|