• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 2
Apr.  2014
Turn off MathJax
Article Contents
PENG Yongbo, LI Jie. Probability Density Evolution Method of Nonlinear Random Vibration Analysis[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 220-226. doi: 10.3969/j.issn.0258-2724.2014.02.006
Citation: PENG Yongbo, LI Jie. Probability Density Evolution Method of Nonlinear Random Vibration Analysis[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 220-226. doi: 10.3969/j.issn.0258-2724.2014.02.006

Probability Density Evolution Method of Nonlinear Random Vibration Analysis

doi: 10.3969/j.issn.0258-2724.2014.02.006
  • Received Date: 10 Dec 2012
  • Publish Date: 25 Mar 2014
  • In order to reveal the applicability of the probability density evolution method in nonlinear random vibration analysis, a comparative research of the probability density evolution method and the classical nonlinear random vibration analysis was carried out by investigating the nonlinear responses of a class of randomly base-driven Duffing oscillators using the probability density evolution method (PDEM), the adaptive polynomial chaos expansion (APCE) and the Monte Carlo simulation (MCS). A physically based stochastic ground motion model was employed, and represented by a Karhunen-Love expansion in the application of the APCE. This discrete representation can be viewed as a projection of the physical vector space into the Gaussian vector space. Numerical results reveal that the solution processes of the three approaches are identical to weakly nonlinear systems, while they are approximately identical to strongly nonlinear systems though errors resulted from numerical techniques and artificial truncations are amplified, indicating that the solution of the PDEM is equivalent to that of the classical nonlinear random vibration analysis in the mean-square sense. The PDEM, moreover, goes a step further than the classical nonlinear random vibration analysis since the probability density function of responses and the dynamic reliability of systems can be simultaneously provided by the PDEM. The other methods, however, need much more computational efforts to obtain high order statistics of responses.

     

  • loading
  • 朱位秋. 随机振动[M]. 北京:科学出版社, 1992: 1-3.
    ROBERTS J B, SPANOS P D. Random vibration and statistical linearization[M]. West Sussex: John Wiley Sons, 1990: 1-16.
    李杰, 陈建兵. 随机结构非线性动力响应的概率密度演化分析[J]. 力学学报, 2003, 35(6): 716-722. LI Jie, CHEN Jianbing. The probability density evolution method for analysis of dynamic nonlinear response of stochastic structures[J]. Acta Mechanica Sinica, 2003, 35(6): 716-722.
    LI Jie, CHEN Jianbing. The principle of preservation of probability and the generalized density evolution equation[J]. Structural Safety, 2008, 30: 65-77.
    LI Jie, CHEN Jianbing. Stochastic dynamics of struc-tures[M]. Singapore: John Wiley Sons, 2009: 191-284.
    彭勇波, 陈建兵, 李杰. 广义密度演化方程与经典随机振动分析的比较研究[J]. 力学季刊, 2010, 31(2): 151-158. PENG Yongbo, CHEN Jianbing, LI Jie. Comparative study between generalized density evolution equation and classical random vibration analysis[J]. Chinese Quarterly of Mechanics, 2010, 31(2): 151-158.
    GHANEM R, SPANOS P D. Stochastic finite elements: a spectral approach[M]. New York: Springer, 1991: 81-92.
    安自辉, 李杰. 强震地面运动的频域物理模型研究[J]. 同济大学学报, 2008, 36(7): 869-873. AN Zihui, LI Jie. Physical model research on strong ground motion in frequency domain[J]. Journal of Tongji University: Natural Science, 2008, 36(7): 869-873.
    李杰, 刘章军. 基于标准正交基的随机过程展开法[J]. 同济大学学报, 2006, 34(10): 1279-1283. LI Jie, LIU Zhangjun. Expansion method of stochastic processes based on normalized orthogonal bases[J]. Journal of Tongji University: Natural Science, 2006, 34(10): 1279-1283.
    李杰, 艾晓秋. 基于物理的随机地震动模型研究[J]. 地震工程与工程振动, 2006, 26(5): 21-26. LI Jie, AI Xiaoqiu. Study on random model of earthquake ground motion based on physical process[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(5): 21-26.
    CHEN Jianbing, LI Jie. Strategy for selecting representative points via tangent spheres in the probability density evolution method[J]. International Journal for Numerical Methods in Engineering, 2008, 74(13): 1988-2014.
    LI R, GHANEM R. Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration[J]. Probabilistic Engineering Mechanics, 1998, 13(2): 125-136.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1071) PDF downloads(683) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return