Citation: | PENG Yongbo, LI Jie. Probability Density Evolution Method of Nonlinear Random Vibration Analysis[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 220-226. doi: 10.3969/j.issn.0258-2724.2014.02.006 |
朱位秋. 随机振动[M]. 北京:科学出版社, 1992: 1-3.
|
ROBERTS J B, SPANOS P D. Random vibration and statistical linearization[M]. West Sussex: John Wiley Sons, 1990: 1-16.
|
李杰, 陈建兵. 随机结构非线性动力响应的概率密度演化分析[J]. 力学学报, 2003, 35(6): 716-722. LI Jie, CHEN Jianbing. The probability density evolution method for analysis of dynamic nonlinear response of stochastic structures[J]. Acta Mechanica Sinica, 2003, 35(6): 716-722.
|
LI Jie, CHEN Jianbing. The principle of preservation of probability and the generalized density evolution equation[J]. Structural Safety, 2008, 30: 65-77.
|
LI Jie, CHEN Jianbing. Stochastic dynamics of struc-tures[M]. Singapore: John Wiley Sons, 2009: 191-284.
|
彭勇波, 陈建兵, 李杰. 广义密度演化方程与经典随机振动分析的比较研究[J]. 力学季刊, 2010, 31(2): 151-158. PENG Yongbo, CHEN Jianbing, LI Jie. Comparative study between generalized density evolution equation and classical random vibration analysis[J]. Chinese Quarterly of Mechanics, 2010, 31(2): 151-158.
|
GHANEM R, SPANOS P D. Stochastic finite elements: a spectral approach[M]. New York: Springer, 1991: 81-92.
|
安自辉, 李杰. 强震地面运动的频域物理模型研究[J]. 同济大学学报, 2008, 36(7): 869-873. AN Zihui, LI Jie. Physical model research on strong ground motion in frequency domain[J]. Journal of Tongji University: Natural Science, 2008, 36(7): 869-873.
|
李杰, 刘章军. 基于标准正交基的随机过程展开法[J]. 同济大学学报, 2006, 34(10): 1279-1283. LI Jie, LIU Zhangjun. Expansion method of stochastic processes based on normalized orthogonal bases[J]. Journal of Tongji University: Natural Science, 2006, 34(10): 1279-1283.
|
李杰, 艾晓秋. 基于物理的随机地震动模型研究[J]. 地震工程与工程振动, 2006, 26(5): 21-26. LI Jie, AI Xiaoqiu. Study on random model of earthquake ground motion based on physical process[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(5): 21-26.
|
CHEN Jianbing, LI Jie. Strategy for selecting representative points via tangent spheres in the probability density evolution method[J]. International Journal for Numerical Methods in Engineering, 2008, 74(13): 1988-2014.
|
LI R, GHANEM R. Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration[J]. Probabilistic Engineering Mechanics, 1998, 13(2): 125-136.
|