Citation: | JIANG Yangsheng, LI Yan, LI Hao, HU Lu, TANG Youhua. Optimization for Joint Relocation of Carsharing Based on Modular Simulation[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 74-82. doi: 10.3969/j.issn.0258-2724.20210083 |
It is difficult for operators to effectively solve the profitable difficulty caused by the imbalanced distribution of shared vehicles when considering staff-based and customer-based relocation alone. Thus, based on the traditional space-time network, the impact of time-varying road congestion and trip demands on the operation is considered. Based on C# language and O2DES (object-oriented discrete event simulation) framework, an efficient carsharing system model composed of modular station and road segment models is built. Moreover, a simulation-optimization model that jointly determines vehicle inventory thresholds and trip pricing is proposed to maximize the daily net revenue of operators. In order to solve the global optimization problem in a random environment, an elitist genetic algorithm (EGA) with optimal computing budget allocation (OCBA) is designed. Finally, a case study in Chengdu with five sites is conducted to demonstrate the efficiency of the proposed simulation-optimization model. The results show that with the same fleet size, the optimal design can increase the average daily net revenue by 10.37%−162.30% compared with customer-based relocation (fixed pricing); the optimized scheme can increase the profit by 15.34% compared with separate staff-based relocation.
[1] |
MARTIN E W, SHAHEEN S A. Greenhouse gas emission impacts of carsharing in North America[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1074-1086. doi: 10.1109/TITS.2011.2158539
|
[2] |
DI FEBBRARO A, SACCO N, SAEEDNIA M. One-way carsharing[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2319(1): 113-120. doi: 10.3141/2319-13
|
[3] |
JORGE D, CORRELA G H D A. Carsharing systems demand estimation and defined operations: a literature review[J]. European Journal of Transport & Infrastructure Reaserch, 2013, 13(3): 201-220.
|
[4] |
WANG L, LIU Q, MA W J. Optimization of dynamic relocation operations for one-way electric carsharing systems[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 55-69. doi: 10.1016/j.trc.2019.01.005
|
[5] |
BARTH M, TODD M. Simulation model performance analysis of a multiple station shared vehicle system[J]. Transportation Research Part C: Emerging Technologies, 1999, 7(4): 237-259. doi: 10.1016/S0968-090X(99)00021-2
|
[6] |
CATALANO M, CASTO B L, MIGLIORE M. Car sharing demand estimation and urban transport demand modelling using stated preference techniques[J]. European Transport, 2008, 40: 33-50.
|
[7] |
CHEU R L, XU J X, KEK A G H, et al. Forecasting shared-use vehicle trips with neural networks and support vector machines[J]. Transportation Research Record: Journal of the Transportation Research Board, 2006, 1968(1): 40-46. doi: 10.1177/0361198106196800105
|
[8] |
KEK A G H, CHEU R L, CHOR M L. Relocation simulation model for multiple-station shared-use vehicle systems[J]. Transportation Research Record: Journal of the Transportation Research Board, 2006, 1986(1): 81-88. doi: 10.1177/0361198106198600111
|
[9] |
KEK A G H, CHEU R L, MENG Q, et al. A decision support system for vehicle relocation operations in carsharing systems[J]. Transportation Research Part E: Logistics and Transportation Review, 2009, 45(1): 149-158. doi: 10.1016/j.tre.2008.02.008
|
[10] |
CAO G Y, WANG L, JIN Y, et al. Determination of the vehicle relocation triggering threshold in electric car-sharing system[C]//Proceedings of 2016 Chinese Intelligent Systems Conference. [S.1.]: Spring, 2016: 11-22
|
[11] |
王宁,舒雅静,唐林浩,等. 基于动态定价的共享汽车自适应调度策略[J]. 交通运输系统工程与信息,2018,18(5): 12-17,74. doi: 10.16097/j.cnki.1009-6744.2018.05.003
WANG Ning, SHU Yajing, TANG Linhao, et al. Adaptive scheduling strategy in car-sharing system based on feedback dynamic pricing[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 12-17,74. doi: 10.16097/j.cnki.1009-6744.2018.05.003
|
[12] |
王宁,郑文晖,刘向,等. 基于用户激励的共享电动汽车调度成本优化[J]. 同济大学学报(自然科学版),2018,46(12): 1668-1675,1721. doi: 10.11908/j.issn.0253-374x.2018.12.008
WANG Ning, ZHENG Wenhui, LIU Xiang, et al. Relocation cost optimization model of electric vehicle sharing based on user incentive[J]. Journal of Tongji University (Natural Science), 2018, 46(12): 1668-1675,1721. doi: 10.11908/j.issn.0253-374x.2018.12.008
|
[13] |
JORGE D, MOLNAR G, DE ALMEIDA CORREIA G H. Trip pricing of one-way station-based carsharing networks with zone and time of day price variations[J]. Transportation Research Part B: Methodological, 2015, 81: 461-482. doi: 10.1016/j.trb.2015.06.003
|
[14] |
XU M, MENG Q, LIU Z Y. Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment[J]. Transportation Research Part B: Methodological, 2018, 111: 60-82. doi: 10.1016/j.trb.2018.03.001
|
[15] |
NOURINEJAD M, ROORDA M J. A dynamic carsharing decision support system[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 66: 36-50. doi: 10.1016/j.tre.2014.03.003
|
[16] |
CHEN C H, LEE L H. Stochastic simulation optimization: optimal computing budget allocation[M]. Singapore: World Scientific, 2010: 40-60.
|
[17] |
LI H B, ZHOU C H, LEE B K, et al. Capacity planning for mega container terminals with multi-objective and multi-fidelity simulation optimization[J]. IISE Transactions, 2017, 49(9): 849-862. doi: 10.1080/24725854.2017.1318229
|
[18] |
LI H B, ZHU Y C, CHEN Y X, et al. The object-oriented discrete event simulation modeling: a case study on aircraft spare part management[C]//2015 Winter Simulation Conference (WSC). Piscataway: IEEE, 2015: 3514-3525.
|
[19] |
ZEIGLER B P. Hierarchical, modular discrete-event modelling in an object-oriented environment[J]. Simulation, 1987, 49(5): 219-230. doi: 10.1177/003754978904900506
|
[20] |
ZEIGLER B P, PRAEHOFER H, KIM T G. Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems[M]. Pittsburgh: Academic Press, 2000: 4-5.
|
[21] |
ZHOU C H, LEE L H, CHEW E P, et al. A modularized simulation for traffic network in container terminals via network of servers with dynamic rates[C]//Proceedings of 2017 Winter Simulation Conference (WSC). Las Vegas: IEEE, 2017: 3150-3161.
|
[22] |
HU L, ZHAO B, ZHU J X, et al. Two time-varying and state-dependent fluid queuing models for traffic circulation systems[J]. European Journal of Operational Research, 2019, 275(3): 997-1019. doi: 10.1016/j.ejor.2019.01.020
|
[23] |
CHEN H C, CHEN C H, YUCESAN E. Computing efforts allocation for ordinal optimization and discrete event simulation[J]. IEEE Transactions on Automatic Control, 2000, 45(5): 960-964. doi: 10.1109/9.855560
|
[24] |
CHEN C H, LIN J W, YÜCESAN E, et al. Simulation budget allocation for further enhancing the efficiency of ordinal optimization[J]. Discrete Event Dynamic Systems, 2000, 10(3): 251-270. doi: 10.1023/A:1008349927281
|
[25] |
XIAO H, LEE L H. Simulation optimization using genetic algorithms with optimal computing budget allocation[J]. Journal of Simulation, 2014, 90(10): 1146-1157. doi: 10.1177/0037549714548095
|
[26] |
MANDL C E. Evaluation and optimization of urban public transportation networks[J]. European Journal of Operational Research, 1980, 5(6): 396-404. doi: 10.1016/0377-2217(80)90126-5
|