• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 22 Issue 3
Jun.  2009
Turn off MathJax
Article Contents
LIN Chuan, FENG Quanyuan. Information Sharing Strategies for Particle Swarm Optimization Algorithm[J]. Journal of Southwest Jiaotong University, 2009, 22(3): 437-441.
Citation: LIN Chuan, FENG Quanyuan. Information Sharing Strategies for Particle Swarm Optimization Algorithm[J]. Journal of Southwest Jiaotong University, 2009, 22(3): 437-441.

Information Sharing Strategies for Particle Swarm Optimization Algorithm

  • Received Date: 02 Jun 2008
  • Publish Date: 20 Jun 2009
  • To find out a more efficient information sharing strategy,the information sharing mechanism and the role of the equilibrium point in particle swarm optimization (PSO) algorithms were analyzed. Based on the analysis,four kinds of PSO algorithms using different information sharing strategies were presented. Five classical benchmark functions were used to test and compare these PSO algorithms. The simulation results show that the first two PSO algorithms in the four algorithms evidently outperform the standard PSO algorithm. Based on the theoretical analysis of PSO algorithms and the simulation results,some conditions for a good information sharing strategy were summarized. That is,particles should selectively share the information of their neighbors in order to guarantee that their equilibrium points have both good quality and diversity but do not change too randomly.

     

  • loading
  • SHI Y,EBERHART R C.A modified particle swarm optimizer[C]//Pree.of the IEEE International Conference on Evolutionary Computation.Anchorage:IEEE Press,1998:69-73.[2] 谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134.XIE Xiaofeng,ZHANG Wenjun,YANG Zhilian.Overview of particle swarm optimization[J].Control and Decision,2003,18(2):129-134.[3] KENNEDY J,MENDES R.Population structure and particle swarm performance[C]∥Proc.of the IEEE International Conference on Evolutionary Computation.Honolulu:IEEE Press,2002:1671-1676.[4] JANSON S,MIDDENDORF M.A hierarchical particle swarm optimizer and its adaptive variant[J].IEEE Trans.on Systems.Man,and Cybernetics-Part B:Cybernectics,2005,35(6):1272-1282.[5] MENDES R,KENNEDY J.The fully informed particle swarm:simpler,maybe better[J].IEEE Trans.on Evolutionary Computation.2004,8(3):204-210.[6] KENNEDY J,MENDES R.Neighborhood topologies in fully informed and best-of-neighborhood particle swarm[J].IEEE Trans.on Systems,Man,and Cybernetics-Part C:Applications and Reviews,2006,36(4):5 15-5 19.[7] 林川,冯全源.一种新的自适应粒子群优化算法[J].计算机工程,2008,34(7):181-183.LIN Chuan.FENG Quanyuan.New adaptive particle swarm optimization algorithm[J].Computer Engineering,2008,34(7):181-183.[8] 林川,冯全源.基于微粒群本质特征的混沌微粒群优化算法[J].西南交通大学学报,2007,42(6):665-669.LIN Chuan,FENG Quanyuan.Chaotic particle swarm optimization algorithm based on the essence of particle swarm[J].Journal of Southwest Jiaotong University,2007,42(6):665-669.[9] PERAM T,VEERAMACHANENI K,MOHAN C K.Fitness-distance-ratio based particle swarm optimization[C]//Proc.of the IEEE Swarm Intelligence Symposium.Indianapolis:IEEE Press,2003:174-181.[10] LIN Chuan,FENG Quanyuan.The standard particle swarm optimization algorithm convergence analysis and parameter selection[C]//Proc.of Third Int.Conf.on Natural Computation.Haikou:IEEE Press,2007:823-826.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1702) PDF downloads(296) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return