Citation: | JIANG Shenghua, HOU Jianguo, HE Yingming. Steel Corrosion Monitoring Based on Partial Modulus of Magnetic Gradient Tensor[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1176-1184. doi: 10.3969/j.issn.0258-2724.20191174 |
In order to find a nondestructive and quantitative monitoring method for steel corrosion in reinforced concrete, theoretical formulas of the partial modulus and corrosion rate of rebar are derived with consideration of the influence of the Earth’s background magnetic field and environmental interference magnetic field. Accelerated corrosion tests were performed on 8 steel bars through electrification to obtain specimens with different degrees of corrosion. A rebar corrosion monitoring system was then developed to measure the magnetic field intensity of rebar before and after corrosion. Finally, the partial modulus of the magnetic gradient tensor is used to calculate the corrosion rate of the rebar. Results show that the magnetic field intensity curve of the rebar is generally shifted after corrosion, but the absolute value after corrosion may increase or decrease compared with that before corrosion, without consistency. The absolute value of the magnetic gradient and the average value of the partial modulus of the steel bar after corrosion are less than their counterparts before corrosion. In the magnetic monitoring of rebar corrosion, the magnetic gradient and partial modulus of the rebar are much larger than those of the environmental magnetic field, and therefore the gradient of the environmental magnetic field and its partial modulus are negligible. The minimum error between calculated and measured corrosion rates of the 8 specimens is 0.22%, while the maximum error is 9.40%, and the average error is 3.92%, with a standard deviation of 3.32%.
[1] |
苏成光,刘丹,赵坪锐,等. 道床板钢筋锈蚀的细观力学影响[J]. 西南交通大学学报,2020,55(2): 273-281, 289.
SU Chengguang, LIU Dan, ZHAO Pingrui, et al. Meso-mechanical effect of track slab rebar corrosion[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 273-281, 289.
|
[2] |
DOUBOV A A. Screening of weld quality using the magnetic metal memory effect[J]. Weld World, 1998, 41(3): 196-199.
|
[3] |
DOUBOV A A. The express technique of welded joints examination with use of metal magnetic memory[J]. NDT & E International, 2000, 33(6): 351-362.
|
[4] |
FERNANDES B, TITUS M, NIMS D K, et al. Field test of magnetic methods for corrosion detection in prestressing strands in adjacent box-beam bridges[J]. Journal of Bridge Engineering, 2012, 17(6): 984-988. doi: 10.1061/(ASCE)BE.1943-5592.0000379
|
[5] |
陈海龙,王长龙,朱红运. 基于磁梯度张量的金属磁记忆检测方法[J]. 仪器仪表学报,2016,37(3): 602-609. doi: 10.3969/j.issn.0254-3087.2016.03.017
CHEN Hailong, WANG Changlong, ZHU Hongyun. Metal magnetic memory test method based on magnetic gradient tensor[J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 602-609. doi: 10.3969/j.issn.0254-3087.2016.03.017
|
[6] |
马惠香,周建庭,赵瑞强,等. 基于金属磁记忆技术的钢筋应力无损检测试验[J]. 江苏大学学报(自然科学版),2018,39(3): 106-111.
MA Huixiang, ZHOU Jianting, ZHAO Ruiqiang, et al. Non-destructive testing of steel bar stress based on metal magnetic memory technology[J]. Journal of Jiangsu University (Natural Science Edition), 2018, 39(3): 106-111.
|
[7] |
WIEGERT R, OESCHGER J. Generalized magnetic gradient contraction based method for detection, localization and discrimination of underwater mines and unexploded ordnance[C]//Proceedings of Oceans 2005 MTS/IEEE. Washington D. C.: IEEE, 2005: 1-8
|
[8] |
WIEGERT R F, PURPURA J W. Magnetic scalar triangulation and ranging system for autonomous underwater vehicle based detection, localization and classification of magnetic mines[C]//Oceans. Kobe: IEEE, 2005: 890-896.
|
[9] |
LIU R, WANG H. Detection and localization of improvised explosive devices based on 3-axis magnetic sensor array system[J]. Procedia Engineering, 2010, 7: 1-9. doi: 10.1016/j.proeng.2010.11.001
|
[10] |
SCHMIDT P W, CLARK D A. The magnetic gradient tensor:its properties and uses in source characterization[J]. Leading Edge, 2006, 25(1): 75-78. doi: 10.1190/1.2164759
|
[11] |
WIEGERT R, LEE K, OESCHGER J. Improved magnetic STAR methods for real-time, point-by-point localization of unexploded ordnance and buried mines[C]//Oceans. Quebec City: IEEE, 2008: 1-7.
|
[12] |
WIEGERT R F. Magnetic STAR technology for real-time localization and classification of unexploded ordnance and buried mines[C]//Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV. Orlando: [s.n.], 2009: 73031U.1-73031U.19.
|
[13] |
江胜华,申宇,褚玉程. 基于磁偶极子的磁场梯度张量缩并的试验验证及相关参数确定[J]. 中国惯性技术学报,2015,23(1): 103-106,114.
JIANG Shenghua, SHEN Yu, CHU Yucheng. Experimental verification and related parameter’s determination for magnetic gradient tensor contraction using magnetic dipole[J]. Journal of Chinese Inertial Technology, 2015, 23(1): 103-106,114.
|
[14] |
江胜华,侯建国,何英明. 基于磁偶极子的磁场梯度张量局部缩并及试验验证[J]. 中国惯性技术学报,2017,25(4): 473-477.
JIANG Shenghua, HOU Jianguo, HE Yingming, et al. Theoretical study and experimental verification of magnetic gradient tensor partial contraction using magnetic dipole[J]. Journal of Chinese Inertial Technology, 2017, 25(4): 473-477.
|
[15] |
江胜华,武立群,侯建国,等. 基于磁性标签石块的桥墩局部冲刷监测方法[J]. 重庆大学学报,2016,39(1): 88-97.
JIANG Shenghua, WU Liqun, HOU Jianguo, et al. Bridge local scour monitoring using magnetic label rock[J]. Journal of Chongqing University, 2016, 39(1): 88-97.
|
[16] |
江胜华,周智,欧进萍. 基于磁测的边坡深部大变形监测方法[J]. 岩土力学,2013,34(10): 3033-3038.
JIANG Shenghua, ZHOU Zhi, OU Jinping. Slope internal large deformation monitoring using magnetic survey[J]. Rock and Soil Mechanics, 2013, 34(10): 3033-3038.
|
[17] |
江胜华,周智,欧进萍. 基于磁场梯度定位的边坡变形监测原理[J]. 岩土工程学报,2012,34(10): 1944-1949.
JIANG Shenghua, ZHOU Zhi, OU Jinping. Slope deformation monitoring principle based on magnetic gradient tensor[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1944-1949.
|
[18] |
干伟忠,金伟良,高明赞. 混凝土中钢筋加速锈蚀试验适用性研究[J]. 建筑结构学报,2011,32(2): 41-47.
GAN Weizhong, JIN Weiliang, GAO Mingzan. Applicability study on accelerated corrosion methods of Steel bars in concrete structure[J]. Journal of Building Structures, 2011, 32(2): 41-47.
|
[19] |
张伟平, 王晓刚, 顾祥林等. 加速锈蚀与自然锈蚀钢筋混凝土梁受力性能比较分析[J]. 东南大学学报(自然科学版), 2006, 36(增刊Ⅱ): 139-144.
ZHANG Weiping, WANG Xiaogang, GU Xianglin, et al. Comparative study on structural performance of reinforced concrete beams subjected to natural corrosion and accelerated corrosion[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(SⅡ): 139-144.
|
[1] | LI Maohong, LIANG Lei, GUO Qiuxu, FU Xiaojie, HUANG Qunyi, ZHANG Shengli, WANG Ping. Whisker-Reinforced Repairing Mortar for High-Speed Railway Concrete[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240037 |
[2] | ZHAO Hua, YUAN Weiguang, WEI Chengjin, LENG Donghang, CHEN Peng. Experimental Study on Seismic Performance of Concrete Frame Structures Reinforced with High-Strength Steel Bars[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250036 |
[3] | YUAN Weiguang, ZHAO Hua, MA Lan, XIAO Qiang, WEI Chengjin. Investigation on Seismic Performance of Concrete Short-Leg Shear Wall with High-Strength Steel Bars[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230376 |
[4] | HE Fei, WANG Xu, JIANG Daijun, ZHOU Yalong, LI Junshan, CHEN Hangjie, CHEN Mingwei. Creep Characteristics of Frozen Sand-Concrete Interface Based on Ice Content[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 361-368. doi: 10.3969/j.issn.0258-2724.20220552 |
[5] | LI Jin, SHI Yuefeng, XIAO Xin, LOU Liangwei, CAI Degou, XIAO Feipeng. Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 281-288. doi: 10.3969/j.issn.0258-2724.20220335 |
[6] | LI Fuhai, TANG Huiqi, LI Jiyun, LIU Menghui, WANG Jiangshan, CHEN Shuang, XU Tengfei. Concrete Elastic Modulus and Creep Control Based on Dense Packing Theory[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 404-412. doi: 10.3969/j.issn.0258-2724.20210431 |
[7] | ZHAO Haitao, DING Jian, YANG Guo, XIANG Yu, XU Wen, CHEN Yuzhi. Experimental Investigation of Relative Humidity Response in Early-Age Concrete Under Tensile Stress[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1104-1112. doi: 10.3969/j.issn.0258-2724.20220134 |
[8] | TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388 |
[9] | SU Chengguang, LIU Dan, ZHAO Pingrui, LIU Xueyi. Meso-mechanical Effect of Track Slab Rebar Corrosion[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 273-281, 289. doi: 10.3969/j.issn.0258-2724.20190321 |
[10] | QIAO Hongxia, WANG Penghui, LI Yuanke, GUO Xiangke, GONG Wei. Corrosion Prediction of Coated Steel in Magnesium Cement Concrete Based on Wiener Degradation[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1252-1257. doi: 10.3969/j.issn.0258-2724.20170388 |
[11] | JI Yongsheng, ZENG Ping, MA Huirong, ZHANG Linglei, ZHAO Wen. Experimental Research on Influence of Transverse Crack on Corrosion Rate of Rebar in Concrete[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 36-41,61. doi: 10.3969/j.issn.0258-2724.2013.01.006 |
[12] | WANG Hailong|LIChaohong|XUGuangxing, . Mesoscopic Numerical Simulation of Bond Behavior of Ribbed Bars and Concrete[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 365-372. doi: 10.3969/j.issn.0258-2724.2011.03.002 |
[13] | DANDan-hui, HE Guang-han. Analysis on the Effect of Stresses on Corrosion of Reinforcing Steels[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 181-184. |
[14] | ZHANGKai-jing. Investigation on Shear Strength of the Oblique Section of Concrete Simply Supported Beam[J]. Journal of Southwest Jiaotong University, 2000, 13(1): 1-6. |