• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 55 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
ZHANG Liyan, KONG Zongze, BIAN Liding. Load Forecasting and Transformer Capacity Optimization for Newly-built Traction Substation[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 847-855. doi: 10.3969/j.issn.0258-2724.20190429
Citation: ZHANG Liyan, KONG Zongze, BIAN Liding. Load Forecasting and Transformer Capacity Optimization for Newly-built Traction Substation[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 847-855. doi: 10.3969/j.issn.0258-2724.20190429

Load Forecasting and Transformer Capacity Optimization for Newly-built Traction Substation

doi: 10.3969/j.issn.0258-2724.20190429
  • Received Date: 15 May 2019
  • Rev Recd Date: 16 Jul 2019
  • Available Online: 05 Sep 2019
  • Publish Date: 01 Aug 2020
  • In order to predict the load of a newly-built traction substation and optimize the traction transformer capacity, Gaussian mixture model was employed for clustering the measured data of traction loads, and then the neural network is introduced to match and assign the new traction load. According to the results of clustering and matching, the new load process for new electrified railway is evaluated by the probability density and Monte Carlo method. Then based on the theory of heat transfer and the calculation of aging rates, the difference equation models of the temperature rise and loss of life is proposed to optimize the capacity of new transformer. After analyzing large amount of measured data from traction substations, the pseudo-F value of the clustered data is 12.81, and rises to 12.90 when new load is matched and assigned, indicating that the clustering and assigning methods are effective. The capacity utilization ratio in case study rises from 60% to 96% by modeling the traction transformers. Even with safety margin, the capacity should be expanded and the capacity utilization ratio is also 75%, which achieves the goal of capacity optimization and makes the best of the temperature rise and loss of life.

     

  • loading
  • 张丽艳,陈映月,韩正庆. 基于改进聚类方式的牵引负荷分类方法研究[J]. 西南交通大学学报,2020,55(1): 27-33,40.

    ZHANG Liyan, CHEN Yingyue, HAN Zhengqing. Research on traction load classification method Bbased on iImproved clustering method[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 27-33,40.
    陈明等. 神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2013: 246-247.
    张烨,黄新波,陈小雄,等. 输电线路防外力破坏智能预警系统研究[J]. 高压电器,2015,51(8): 54-61.

    ZHANG Ye, HUANG Xinbo, CHEN Xiaoxiong, et al. Intelligent early-warning system for preserving transmission line from external damage[J]. High Voltage Apparatus, 2015, 51(8): 54-61.
    郎坤. 电力系统短期负荷预测及经济调度决策优化研究[D]. 大连: 大连理工大学, 2016.
    朱晓露. 基于BP神经网络的电力负荷中长期预测[D]. 保定: 华北电力大学, 2017.
    陈宇杰. 基于BP神经网络的区域配电网中期电力负荷预测[D]. 长春: 吉林大学, 2017.
    林麒麟. 基于神经网络智能算法的电力系统短期负荷预测研究[D]. 兰州: 兰州理工大学, 2017.
    黄钰淇. 贯通式同相牵引供电系统故障识别研究[D]. 昆明: 昆明理工大学, 2017.
    秦臻. 基于级联变换器的贯通式牵引供电系统故障诊断与系统重构策略研究[D]. 成都: 西南交通大学, 2017.
    邢小丽. 电铁牵引供电系统谐波检测及背景谐波分析方法的研究[D]. 保定: 华北电力大学, 2008.
    解绍锋,李群湛,王杰文,等. 基于统计的牵引变压器典型负荷曲线分析[J]. 机车电传动,2004(6): 24-27. doi: 10.3969/j.issn.1000-128X.2004.06.008

    XIE Shaofeng, LI Qunzhan, WANG Jiewen, et al. Analysis on typical load curve of traction transformer based on statistics[J]. Electric Drive for Locomotives, 2004(6): 24-27. doi: 10.3969/j.issn.1000-128X.2004.06.008
    王杰文. 牵引变压器典型负荷曲线的建模、仿真与应用[D]. 成都: 西南交通大学, 2004.
    吴羽生. 高速铁路牵引变压器典型负荷曲线与容量优化研究[D]. 成都: 西南交通大学, 2011.
    李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 160-162.
    周英, 卓金武, 卞月青. 大数据挖掘: 系统方法与实例分析[M]. 北京: 机械工业出版社, 2016: 206-208.
    张燕杰. 基于混合高斯模型的聚类分析[D]. 武汉: 华中科技大学, 2014.
    谢中华. MATLAB统计分析与应用: 40个案例分析[M]. 北京: 北京航空航天大学出版社, 2015: 333.
    茆诗松, 王静龙, 濮晓龙. 高等数理统计[M]. 上海: 高等教育出版社, 2004: 427-431.
    石若颖. 新建电气化铁路牵引负荷统计预测研究[D]. 成都: 西南交通大学, 2017.
    郭欣,王蕾,宣伯凯,等. 基于有监督Kokonen神经网络的步态识别[J]. 自动化学报,2017,43(3): 430-438.

    GUO Xin, WANG Lei, XUAN Bokai, et al. Gait recognition based on supervised Kohonen neural network[J]. Acta Automatica Sinica, 2017, 43(3): 430-438.
    LAROSE D T, LAROSE C D. Data mining and predictive analysis[M]. Peking: Tsinghua University Press, 2017.
    LAROSE D. Discovering statistics[M]. 2nd ed. New York: W. H. and Freeman Company Publisher, 2013.
    张丽艳. 新建电气化铁路对电网电能质量影响的预测与对策分析研究[D]. 成都: 西南交通大学, 2012.
    全国变压器标准化技术委员会. 电力变压器第7部分: 油浸式电力变压器负载导则: GB/T 1094.7—2008[S]. 北京: 中国标准出版社, 2009.
    陈民武,尚国旭,智慧,等. 高速铁路牵引变压器容量与配置方案优化研究[J]. 中国铁道科学,2013,34(5): 38-41.

    CHEN Minwu, SHANG Guoxu, ZHI Hui, et al. Study on the scheme for capacity and configuration of traction transformer in high speed railway[J]. China Railway Science, 2013, 34(5): 38-41.
    MCSHANE C P, RAPP K J, CORKRAN J L, et al. Aging of kraft paper in natural ester dielectric fluid[C]//Proceedings of 2002 IEEE 14th International Conference on Dielectric Liquid. Graz: IEEE, 2002: 173-177.
    MCSHANE C P, RAPP K J, CORKRAN J L, et al. Aging of paper insulation in natural ester dielectric fluid[C]//2001 IEEE/PES Transmission and Distribution Conference and Exposition. Atlanta: IEEE, 2001, 2: 675-679.
    中铁电气化局集团有限公司. 电气化铁路牵引变压器技术条件: TB/T 3159—2007[S]. 北京: 中国铁道出版社, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(9)

    Article views(694) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return