Citation: | CHEN Xiaobo, LIANG Shurong, KE Jia, CHEN Ling, HU Yu. Traffic Data Imputation Based on Graph Regularization and Schatten-p Norm Minimization[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1326-1333. doi: 10.3969/j.issn.0258-2724.20210295 |
To make full use of the low-rank characteristics and local neighbor relationship of the traffic data, and accurately recover the missing data in traffic data acquisition system, firstly, the traffic data matrix is pre-interpolated by the low-rank matrix completion model based on kernel norm to obtain the initial estimate of the missing data. Based on this, a graph model that characterizes the local neighbor structure of the data is constructed. Then, a missing value imputation model combining graph regularization and Schatten-
[1] |
陈程. 基于稀疏表示的交通数据缺失值恢复方法研究[D]. 镇江: 江苏大学, 2020.
|
[2] |
HENRICKSON K, ZOU Y J, WANG Y H. Flexible and robust method for missing loop detector data imputation[J]. Transportation Research Record: Journal of the Transportation Research Board, 2015, 2527(1): 29-36. doi: 10.3141/2527-04
|
[3] |
孙玲,刘浩,牛树云. 考虑时空相关性的固定检测缺失数据重构算法[J]. 交通运输工程学报,2010,10(5): 121-126. doi: 10.3969/j.issn.1671-1637.2010.05.021
SUN Ling, LIU Hao, NIU Shuyun. Reconstructive method of missing data for location-specific detector considering spatio-temporal relationship[J]. Journal of Traffic and Transportation Engineering, 2010, 10(5): 121-126. doi: 10.3969/j.issn.1671-1637.2010.05.021
|
[4] |
CHEN Y Y, LV Y S, WANG F Y. Traffic flow imputation using parallel data and generative adversarial networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1624-1630. doi: 10.1109/TITS.2019.2910295
|
[5] |
RODRIGUES F, HENRICKSON K, PEREIRA F C. Multi-output Gaussian processes for crowdsourced traffic data imputation[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(2): 594-603. doi: 10.1109/TITS.2018.2817879
|
[6] |
李林超,曲栩,张健,等. 基于特征级融合的高速公路异质交通流数据修复方法[J]. 东南大学学报(自然科学版),2018,48(5): 972-978. doi: 10.3969/j.issn.1001-0505.2018.05.029
LI Linchao, QU Xu, ZHANG Jian, et al. Missing value imputation method for heterogeneous traffic flow data based on feature fusion[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(5): 972-978. doi: 10.3969/j.issn.1001-0505.2018.05.029
|
[7] |
LI Q, TAN H C, WU Y K, et al. Traffic flow prediction with missing data imputed by tensor completion methods[J]. IEEE Access, 2020, 8: 63188-63201. doi: 10.1109/ACCESS.2020.2984588
|
[8] |
CHEN X Y, HE Z C, CHEN Y X, et al. Missing traffic data imputation and pattern discovery with a Bayesian augmented tensor factorization model[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 66-77. doi: 10.1016/j.trc.2019.03.003
|
[9] |
CHEN X B, CAI Y F, YE Q L, et al. Graph regularized local self-representation for missing value imputation with applications to on-road traffic sensor data[J]. Neurocomputing, 2018, 303: 47-59. doi: 10.1016/j.neucom.2018.04.029
|
[10] |
BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends, 2011, 3(1): 1-122.
|
[11] |
NIE F P, WANG H, HUANG H, et al. Joint Schatten p-norm and ℓ p-norm robust matrix completion for missing value recovery[J]. Knowledge and Information Systems, 2015, 42(3): 525-544. doi: 10.1007/s10115-013-0713-z
|
[12] |
BARTELS R H, STEWART G W. Solution of the matrix equation AX + XB = C[J]. Communications of the ACM, 1972, 15(9): 820-826. doi: 10.1145/361573.361582
|
[13] |
LI L C, ZHANG J, WANG Y G, et al. Missing value imputation for traffic-related time series data based on a multi-view learning method[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2933-2943. doi: 10.1109/TITS.2018.2869768
|
[14] |
ZHANG Y, LIU Y C. Data imputation using least squares support vector machines in urban arterial streets[J]. IEEE Signal Processing Letters, 2009, 16(5): 414-417. doi: 10.1109/LSP.2009.2016451
|