Citation: | HUANG Zuowei, ZHANG Suifeng, ZHANG Taoxin. Optimization of Endmember Extraction in Mixed Pixel Unmixing in Hyperspectral Images[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1150-1156, 1172. doi: 10.3969/j.issn.0258-2724.2018.06.009 |
李二森,朱述龙,周晓明,等. 高光谱图像端元提取算法研究进展与比较[J]. 遥感学报,2011,15(4): 669-679
LI Ersen, ZHU Shulong, ZHOU Xiaoming, et al. The development and comparison of endmember extraction[J]. Journal of Remote Sensing, 2011, 15(4): 669-679
|
TONG Q X, XUE Y Q, ZHANG L F. Progress in hyperspectral remote sensing science and technology in china over the past three decades[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 70-91 doi: 10.1109/JSTARS.2013.2267204
|
SUN X, YANG L, GAO L R, et al. Hyperspectral image clustering method based on artificial bee colony algorithm and Markov random fields[J]. Journal of Applied RemoteSensing, 2015, 9: 095047-1-095047-19
|
TAO Chao, PAN Hongbo, LI Yansheng. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438-2442 doi: 10.1109/LGRS.2015.2482520
|
WEI W, DU Q, YOUNAN N H. Fast supervised hyperspectral band selection using graphics processing unit[J]. Journal of Applied Remote Sensing, 2012, 6: 061504-1-061504-12 doi: 10.1117/1.JRS.6.061504
|
WRIGHT J, YANG A Y, GANESH A, et al. Robustface recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227 doi: 10.1109/TPAMI.2008.79
|
WU Z B, LIU J F, PLAZA A, et al. GPU implementation of composite kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1973-1977 doi: 10.1109/LGRS.2015.2441631
|
ZHANG B, LI S S, WU C S, et al. A neighbourhood-constrained k-means approach to classify very high spatial resolution hyperspectral imagery[J]. Remote Sensing Letters, 2013, 4(2): 161-170 doi: 10.1080/2150704X.2012.713139
|
ZHUANG L, ZHANG B, GAO L R, et al. Normal endmember spectral unmixing method for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2598-2606 doi: 10.1109/JSTARS.2014.2360888
|
谭琨,杜培军. 基于支持向量机的高光谱遥感图像分类[J]. 红外与毫米波学报,2008,28(2): 2009-2013
TAN Kun, DU Peijun. Hyperspectral remote sensing images classification based on SVM[J]. Journal of Infrared and Millimeter Waves, 2008, 28(2): 2009-2013
|
BROWN M, LEWIS H, GUNN S. Linear spectral mixture models and support vector machines for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2346-2360 doi: 10.1109/36.868891
|
CAMPS-VALLS G, GOMEZ-CHOVA L, MUNOZ-MARI J, et al. Composite kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 93-97 doi: 10.1109/LGRS.2005.857031
|
SERPICO S B, MOSER G. Extraction of spectral channels from hyperspectral images for classification purposes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 484-495 doi: 10.1109/TGRS.2006.886177
|
FAUVEL M, CHANUSSOT J, BENEDIKTSSON J A. A spatial-spectral kernel-based approach for theclassification of remote sensing images[J]. Pattern Recognition, 2012, 45(1): 381-392 doi: 10.1016/j.patcog.2011.03.035
|
赵春晖,齐滨,EUNSEOG Y. 基于蒙特卡罗特征降维算法的小样本高光谱图像分类[J]. 红外与毫米波学报),2013,32(1): 62-67
ZHAO Chunhui, QI Bin, EUNSEOG Y. Hyperspectral image classification based on Monte Carlo feature reduction method[J]. Journal of Infrared and Millimeter Waves, 2013, 32(1): 62-67
|
刘雪松,王斌,张立明. 基于非负矩阵分解的高光谱遥感图像混合像元分解[J]. 红外与毫米波学报,2011,30(1): 27-32
LIU Xuesong, WANG Bin, ZHANG Liming. Hyperspectral unm ixing based on nonnegative matrix factorization[J]. Journal of Infrared and Millimeter Waves, 2011, 30(1): 27-32
|