• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 6
Dec.  2018
Turn off MathJax
Article Contents
HUANG Zuowei, ZHANG Suifeng, ZHANG Taoxin. Optimization of Endmember Extraction in Mixed Pixel Unmixing in Hyperspectral Images[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1150-1156, 1172. doi: 10.3969/j.issn.0258-2724.2018.06.009
Citation: HUANG Zuowei, ZHANG Suifeng, ZHANG Taoxin. Optimization of Endmember Extraction in Mixed Pixel Unmixing in Hyperspectral Images[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1150-1156, 1172. doi: 10.3969/j.issn.0258-2724.2018.06.009

Optimization of Endmember Extraction in Mixed Pixel Unmixing in Hyperspectral Images

doi: 10.3969/j.issn.0258-2724.2018.06.009
  • Received Date: 12 Dec 2016
  • Publish Date: 01 Dec 2018
  • Hyperspectral unmixing is a process for unmixing the mixed pixels of a hyperspectral image composed of several substances and their corresponding proportions. Extracting endmembers is a major problem in hyperspectral unmixing. Owing to the goal of achieving a large search range for the endmembers, the efficiency of the traditional algorithm is usually low. Based on an improved ICA(independent component analysis)and optimized endmember extraction method, an improved method of unmixing was proposed. Firstly, endmember extraction was optimized by means of an optimized FastICA algorithm. Thereafter, spatial information and spectral information were considered and combined into a multi-core parallel processing to optimize the candidate endmembers. Lastly, the performance of the proposed algorithm was verified using real hyperspectral data. The method was shown to overcome the shortcomings of the traditional method and obtain more accurate endmembers. In particular, compared to the accuracy of the traditional N-FINDER method, the accuracy of the extracted endmembers increases by 3.55%. The object classification accuracy also improves immensely, and the overall classification accuracy is increased by 2.88%.

     

  • loading
  • 李二森,朱述龙,周晓明,等. 高光谱图像端元提取算法研究进展与比较[J]. 遥感学报,2011,15(4): 669-679

    LI Ersen, ZHU Shulong, ZHOU Xiaoming, et al. The development and comparison of endmember extraction[J]. Journal of Remote Sensing, 2011, 15(4): 669-679
    TONG Q X, XUE Y Q, ZHANG L F. Progress in hyperspectral remote sensing science and technology in china over the past three decades[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 70-91 doi: 10.1109/JSTARS.2013.2267204
    SUN X, YANG L, GAO L R, et al. Hyperspectral image clustering method based on artificial bee colony algorithm and Markov random fields[J]. Journal of Applied RemoteSensing, 2015, 9: 095047-1-095047-19
    TAO Chao, PAN Hongbo, LI Yansheng. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438-2442 doi: 10.1109/LGRS.2015.2482520
    WEI W, DU Q, YOUNAN N H. Fast supervised hyperspectral band selection using graphics processing unit[J]. Journal of Applied Remote Sensing, 2012, 6: 061504-1-061504-12 doi: 10.1117/1.JRS.6.061504
    WRIGHT J, YANG A Y, GANESH A, et al. Robustface recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227 doi: 10.1109/TPAMI.2008.79
    WU Z B, LIU J F, PLAZA A, et al. GPU implementation of composite kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1973-1977 doi: 10.1109/LGRS.2015.2441631
    ZHANG B, LI S S, WU C S, et al. A neighbourhood-constrained k-means approach to classify very high spatial resolution hyperspectral imagery[J]. Remote Sensing Letters, 2013, 4(2): 161-170 doi: 10.1080/2150704X.2012.713139
    ZHUANG L, ZHANG B, GAO L R, et al. Normal endmember spectral unmixing method for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2598-2606 doi: 10.1109/JSTARS.2014.2360888
    谭琨,杜培军. 基于支持向量机的高光谱遥感图像分类[J]. 红外与毫米波学报,2008,28(2): 2009-2013

    TAN Kun, DU Peijun. Hyperspectral remote sensing images classification based on SVM[J]. Journal of Infrared and Millimeter Waves, 2008, 28(2): 2009-2013
    BROWN M, LEWIS H, GUNN S. Linear spectral mixture models and support vector machines for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2346-2360 doi: 10.1109/36.868891
    CAMPS-VALLS G, GOMEZ-CHOVA L, MUNOZ-MARI J, et al. Composite kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 93-97 doi: 10.1109/LGRS.2005.857031
    SERPICO S B, MOSER G. Extraction of spectral channels from hyperspectral images for classification purposes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 484-495 doi: 10.1109/TGRS.2006.886177
    FAUVEL M, CHANUSSOT J, BENEDIKTSSON J A. A spatial-spectral kernel-based approach for theclassification of remote sensing images[J]. Pattern Recognition, 2012, 45(1): 381-392 doi: 10.1016/j.patcog.2011.03.035
    赵春晖,齐滨,EUNSEOG Y. 基于蒙特卡罗特征降维算法的小样本高光谱图像分类[J]. 红外与毫米波学报),2013,32(1): 62-67

    ZHAO Chunhui, QI Bin, EUNSEOG Y. Hyperspectral image classification based on Monte Carlo feature reduction method[J]. Journal of Infrared and Millimeter Waves, 2013, 32(1): 62-67
    刘雪松,王斌,张立明. 基于非负矩阵分解的高光谱遥感图像混合像元分解[J]. 红外与毫米波学报,2011,30(1): 27-32

    LIU Xuesong, WANG Bin, ZHANG Liming. Hyperspectral unm ixing based on nonnegative matrix factorization[J]. Journal of Infrared and Millimeter Waves, 2011, 30(1): 27-32
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views(489) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return