• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 4
Jul.  2014
Turn off MathJax
Article Contents
WANG Rui, LI Hengchao, YIN Zhongke. Hyperspectral Sparse Unmixing via Adaptive Overcomplete Dictionary Learning[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 597-604. doi: 10.3969/j.issn.0258-2724.2014.04.006
Citation: WANG Rui, LI Hengchao, YIN Zhongke. Hyperspectral Sparse Unmixing via Adaptive Overcomplete Dictionary Learning[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 597-604. doi: 10.3969/j.issn.0258-2724.2014.04.006

Hyperspectral Sparse Unmixing via Adaptive Overcomplete Dictionary Learning

doi: 10.3969/j.issn.0258-2724.2014.04.006
  • Received Date: 01 Apr 2013
  • Publish Date: 25 Aug 2014
  • In the linear sparse unmixing model of hyperspectral data, large estimation error of the fractional abundances of endmembers in each mixed pixel may be caused by the incorrect identification of endmembers. A novel sparse unmixing algorithm was proposed based on adaptive overcomplete dictionary. Firstly, according to the spatial continuity of ground objects and the strong correlation between signal components of the hyperspectral data and spectral signatures in the library, the signatures with the projection coefficients of each pixels larger than the preset threshold were grouped as an optimal subset of signatures that best match the signal component of each mixed pixel. Secondly, an adaptive overcomplete dictionary of hyperspectral data was constructed by combining such subsets. Finally, the fractional abundances in this dictionary were obtained using the alternating direction method of multipliers (ADMM). Experimental results on synthetic and real hyperspectral data show that the proposed algorithm improves the accuracy of identifying endmembers, with the reduced abundance estimation error r. When the signal to noise ratio range from 15 to 35 dB, the accuracy of the abundance estimation is improved about 1 to 2 dB compared with SUnSAL (sparse unmixing by variable splitting and augmented Lagrangian).

     

  • loading
  • LANDGREBE D. Hyperspectral image data analysis[J]. IEEE Signal Processing Magazine, 2002, 19(1): 17-28.
    PLAZA A, BENEDIKTSSON J A, BOARDMAN J, et al. Recent advances in techniques for hyperspectral image processing[J]. Remote Sensing of Environment, 2009, 113(1): 110-122.
    BIOUCAS-DIAS J, PLAZA A, DOBIGEON N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-378.
    CHAN T H, MA W K, AMBIKAPATHI A, et al. A simlex volume maximization framework for hyperspectral endmember extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4177-4193.
    RITTER G X, URCID G. A lattice matrix method for hyperspectral image unmixing[J]. Information Sciences, 2011, 181(10): 1787-1803.
    普晗晔,王斌,张立明. 基于单形体几何的高光谱遥感图像解混算法[J]. 中国科学,2012,42(8): 1019-1033. PU Hanye, WANG Bin, ZHANG Liming. Simplex geometry-based abundance estimation algorithm for hyperspectral unmixing[J]. Scientia Sinica Infor-mationis, 2012, 42(8): 1019-1033.
    ZARE A, GADER P. Robust endmember detection using L1 norm factorization[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Honolulu: IEEE, 2010: 971-974.
    罗文斐,钟亮,张兵,等. 高光谱遥感图像光谱解混的独立成分分析技术[J]. 光谱学与光谱分析,2010,30(6): 1628-1633. LUO Wenfei, ZHONG Liang, ZHANG Bing, et al. Independent component analysis for spectral unmixing in hyperspectral remote sensing image[J]. Spectroscopy and Spectral Analysis, 2010, 30(6): 1628-1633.
    SCHMIDT F, SCHMIDT A, TR GUIER E, et al. Implementation strategies for hyperspectral unmixing using bayesian source separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11): 4003-4013.
    IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Sparse unmixing of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2014-2039.
    BIOUCAS-DIAS J, FIGUEIREDO M. Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing[C]//Hyperspectral Image and Signal Process: Evolution in Remote Sensing, (WHISPERS), 2010 2nd Workshop on. Reykjavik: WHISPERS, 2010: 1-4.
    IORDACHE M D, PLAZA A, BIOUCAS-DIAS J. Recent development in sparse hyperspectral unmixing[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Honolulu: IEEE, 2010: 1281-1284.
    吴泽彬,韦志辉,孙乐,等. 基于迭代加权L1正则化的高光谱混合像元分解[J]. 南京理工大学学报,2011,35(4): 431-435. WU Zebin, WEI Zhihui, SUN Le, et al. Hyperspectral unmixingbased on iterative weighted L1 regularization[J]. Journal of Nanjing University Science and Technology, 2011, 35(4): 431-435.
    CHANG C I. Hyperspectral imaging: techniques for spectral detection and classification[M]. New York: Plenum, 2003: 39-50.
    DENG G, TAY D B H, MARUSIC S. A signal denoising algorithm based on overcomplete wavelet representations and gaussian models[J]. Signal Processing, 2007, 87(5): 866-876.
    QIAN Y T, YE M C. Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation[J]. IEEE Journal Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 499-515.
    IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Collaborative sparse regression for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 341-354.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1251) PDF downloads(729) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return