• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 54 Issue 4
Jul.  2019
Turn off MathJax
Article Contents
LI Hengchao, TAN Bei, YANG Gang, SHI Chaoqun, ZHANG Xueqin, WU Guangning. Contamination Degree Prediction of Insulators Based on Hyperspectral Imaging Technology[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 686-693. doi: 10.3969/j.issn.0258-2724.20180267
Citation: LI Hengchao, TAN Bei, YANG Gang, SHI Chaoqun, ZHANG Xueqin, WU Guangning. Contamination Degree Prediction of Insulators Based on Hyperspectral Imaging Technology[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 686-693. doi: 10.3969/j.issn.0258-2724.20180267

Contamination Degree Prediction of Insulators Based on Hyperspectral Imaging Technology

doi: 10.3969/j.issn.0258-2724.20180267
  • Received Date: 08 Apr 2018
  • Rev Recd Date: 10 Aug 2018
  • Available Online: 26 Apr 2019
  • Publish Date: 01 Aug 2019
  • Insulator image can be acquired by hyperspectral imaging technology in a non-contact way, and hyperspectral image has some advantages such as the properties of multi-band, and merging image and spectrum. For this reason, the paper proposes a method to predict contamination degree of insulators based on hyperspectral imaging technology. Firstly, the hyperspectral image in a band range of 400–1 000 nm is acquired by hyperspectral imaging system, followed by the black-and-white correction. Then, some reflectivity spectrum curves of region of interest (ROI) are extracted and further pre-processed by the methods such as the Savitzky-Golay smoothness, logarithm, or first derivative transformations. Finally, some labeled data of real samples are utilized to build support vector machines based insulator contamination degree prediction (SVM-ICDP) model and partial least squares regression based insulator contamination degree prediction (PLSR-ICDP) model, respectively. The experimental results show that when the first derivative transformation is selected as the pre-processing method, the performance of the ICDP model is superior to those of the others. More specifically, the accuracy of SVM-ICDP reaches 91.84%, and the root mean square error (RMSE) of PLSR-ICDP is 0.024 1.

     

  • loading
  • 赵杰. 我国直流输电技术自主创新研究[J]. 中国电力,2006,39(6): 1-4. doi: 10.3969/j.issn.1004-9649.2006.06.001

    ZHAO Jie. Research on self-reliance innovation in HVDC power transmission technologies[J]. Electric Power, 2006, 39(6): 1-4. doi: 10.3969/j.issn.1004-9649.2006.06.001
    黄新波. 输电线路在线监测与故障诊断[M]. 北京: 中国电力出版社, 2014: 60-65
    律方成,秦春旭,郭文义,等. 高海拔地区 ±800 kV特高压直流输电系统绝缘子带电自然积污特性[J]. 高电压技术,2013,39(3): 513-519. doi: 10.3969/j.issn.1003-6520.2013.03.001

    LÜ Fangcheng, QIN Chunxu, GUO Wenyi, et al. Natural contamination deposited characteristics of ±800 kV UHV DC insulators at high altitudes[J]. High Voltage Engineering, 2013, 39(3): 513-519. doi: 10.3969/j.issn.1003-6520.2013.03.001
    张志劲,蒋兴良,孙才新. 污秽绝缘子闪络特性研究现状及展望[J]. 电网技术,2006,30(2): 35-40. doi: 10.3321/j.issn:1000-3673.2006.02.007

    ZHANG Zhijing, JIANG Xingliang, SUN Caixin. Present situation and prospect of research on flashover characteristics of polluted insulators[J]. Power System Technology, 2006, 30(2): 35-40. doi: 10.3321/j.issn:1000-3673.2006.02.007
    赵全香,李红艳,韩振,等. 绝缘子污秽检测方法综述[J]. 电气开关,2012,50(4): 96-98. doi: 10.3969/j.issn.1004-289X.2012.04.031

    ZHAO Quanxiang, LI Hongyan, HAN Zhen, et al. A summary of insulator pollution detection method[J]. Electric Switchgear, 2012, 50(4): 96-98. doi: 10.3969/j.issn.1004-289X.2012.04.031
    李和明,高强,吕旭东,等. 基于微波辐射理论的绝缘子污秽等值盐密/灰密检测模型[J]. 中国电机工程学报,2011,31(7): 132-138.

    LI Heming, GAO Qiang, LÜ Xudong, et al. Detection model of ESDD and NSDD of insulators contamination based on microwave radiation theory[J]. Proceedings of Chinese Society for Electrical Engineering, 2011, 31(7): 132-138.
    牛英博. 基于紫外光脉冲信号的污秽绝缘子放电检测及污秽状态评估[D]. 保定: 华北电力大学, 2012
    金立军,田治仁,高凯,等. 基于红外与可见光图像信息融合的绝缘子污秽等级识别[J]. 中国电机工程学报,2016,36(13): 3682-3691.

    JIN Lijun, TIAN Zhiren, GAO Kai, et al. Discrimination of insulator contamination grades using information fusion of infrared and visible images[J]. Proceeding of the Chinese Society for Electrical Engineering, 2016, 36(13): 3682-3691.
    杨国鹏,余旭初,冯伍法,等. 高光谱遥感技术的发展与应用现状[J]. 测绘通报,2008(10): 1-4.

    YANG Guopeng, YU Xuchu, FENG Wufa, et al. The development and application of hyperspectral RS technology[J]. Bulletin of Surveying and Mapping, 2008(10): 1-4.
    ZHANG C, GUO C, LIU F, et al. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine[J]. Journal of Food Engineering, 2016, 179: 11-18. doi: 10.1016/j.jfoodeng.2016.01.002
    郑志雄,齐龙,马旭,等. 基于高光谱成像技术的水稻叶瘟病病害程度分级方法[J]. 农业工程学报,2013,29(19): 138-144. doi: 10.3969/j.issn.1002-6819.2013.19.017

    ZHENG Zhixiong, QI Long, MA Xu, et al. Grading method of rice leaf blast using hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19): 138-144. doi: 10.3969/j.issn.1002-6819.2013.19.017
    周霄,高峰,张爱武,等. VIS/NIR高光谱成像在中国云冈石窟砂岩风化状况分布研究中的进展[J]. 光谱学与光谱学分析,2012,32(3): 790-794.

    ZHOU Xiao, GAO Feng, ZHANG Aiwu, et al. Advance in the study of the powdered weathering profile of sandstone on China Yungang grottoes based on VIS/NIR hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 790-794.
    郭宗明,张治洲,潘宇曦,等. 利用支持向量机预测生物膜蛋白类型[J]. 上海交通大学学报,2004,38(5): 806-809. doi: 10.3321/j.issn:1006-2467.2004.05.036

    GUO Zongming, ZHANG Zhizhou, PAN Yuxi, et al. Prediction of membrane protein types by using support vector machine[J]. Journal of Shanghai Jiao Tong University, 2004, 38(5): 806-809. doi: 10.3321/j.issn:1006-2467.2004.05.036
    徐爽. 基于高光谱图像技术的红枣品质无损检测研究[D]. 宁夏: 宁夏大学, 2013
    国家电网公司. 电力系统污区分级与外绝缘选择标准: Q/GDW 152—2006[S]. 北京: 中国电力出版社, 2006
    中国国家标准化管理委员会. 交流系统用高压绝缘子的人工污秽试验方法: GB/T 4585—2004[S]. 北京: 中国标准出版社, 2004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views(552) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return