• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
SHI Haiou, YUAN Quan, ZHANG Yunlin, ZENG Wenqu, ZHENG Qing, DING Guofu. Multi-Discipline Forward Collaborative Design Technology Based on BIM Interaction and Data-Driven[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 176-181. doi: 10.3969/j.issn.0258-2724.20200035
Citation: WANG Wengjing, ZHANG Zhipeng, LI Guangquan, SONG Chunyuan. Load Characteristics of Anti-rolling Torsion Bar of High-Speed Train[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1277-1282, 1348. doi: 10.3969/j.issn.0258-2724.20180060

Load Characteristics of Anti-rolling Torsion Bar of High-Speed Train

doi: 10.3969/j.issn.0258-2724.20180060
  • Received Date: 16 Mar 2018
  • Rev Recd Date: 02 Jul 2018
  • Available Online: 11 Oct 2019
  • Publish Date: 01 Dec 2019
  • In order to obtain the load characteristics of the anti-rolling torsion bar during the high-speed train operation, first, the change rules of the load with the train speed, curve radius, and curve superelevation were studied by combining the gyroscope and the speed signal. Second, the maximum loads of the anti-rolling torsion bar at different speed levels were obtained, and the load spectrum, trend load spectrum, and dynamic load spectrum were compiled to calculate the damage ratio of the trend load to dynamic load in the whole test load. The results show that the dynamic load amplitude of the anti-rolling torsion bar increases with the increasing of the train running speed under straight running condition. When the speed increases from 250 km/h to 350 km/h, the maximum load amplitude increases by 30%. At a given surplus superelevation condition, the maximum trend load amplitude of the anti-roll torsion bar decreases with the decreasing of the curve radius, which is from 6.61 kN to 3.54 kN at the operation speed of 240 km/h. For the same curve radius, the trend load amplitude increases with the increasing of the curve superelevation and the maximum load amplitude increases from 3.36 kN to 5.80 kN at the operation speed of 240 km/h.

     

  • 赵双阳. 抗侧滚扭杆轴用弹簧钢材料的性能研究[D]. 株洲: 湖南工业大学, 2013.
    梁鑫,罗世辉,马卫华. 抗侧滚扭杆对地铁车辆动力学性能影响的研究[J]. 内燃机车,2011,446(4): 5-12. doi: 10.3969/j.issn.1003-1820.2011.04.002

    LIANG Xin, LUO Shihui, MA Weihua. Study of the impact on dynamics perform once of metro cars by anti-rolling torsion bar[J]. Diesel Locomotives, 2011, 446(4): 5-12. doi: 10.3969/j.issn.1003-1820.2011.04.002
    段华东. 抗侧滚扭杆对轨道车辆抗侧滚性能的影响研究[J]. 电力机车与城轨车辆,2007,30(5): 14-16. doi: 10.3969/j.issn.1672-1187.2007.05.004

    DUAN Huadong. A study of the impact on anti-roll perform of railway vehicle by anti-roll bar[J]. Electric Locomotives & Mass Transit Vehicles, 2007, 30(5): 14-16. doi: 10.3969/j.issn.1672-1187.2007.05.004
    崔志国,邹敏佳,刘文松,等. CRH6型城际动车组抗侧滚扭杆装置的研制[J]. 机车电传动,2013,5: 62-79. doi: 10.3969/j.issn.1000-128X.2013.05.016

    CUI Zhiguo, ZOU Minjia, LIU Wensong, et al. Research and manufacture of anti-rolling torsion bar equipment for CRH6 inter-city EMUs[J]. Electric Drive for Locomotives, 2013, 5: 62-79. doi: 10.3969/j.issn.1000-128X.2013.05.016
    吕士勇,刘文松,程海涛,等. 380 km/h动车组用抗侧滚扭杆系统的研制[J]. 铁道机车车辆,2011,31(6): 16-18.

    LÜ Shiyong, LIU Wensong, CHENG Haitao, et al. Research and manufacture of anti-roll bar system for a type of 380 km/h EMU[J]. Railway Locomotive & Car, 2011, 31(6): 16-18.
    严隽髦. 车辆工程[M]. 3版. 北京: 中国铁道出版社, 2004: 67-68.
    刘鸿文. 材料力学[M]. 4版. 北京: 高等教育出版社, 2004: 80-85.
    范钦珊, 唐靖林. 材料力学[M]. 3版. 北京: 清华大学出版社, 2015: 59-63.
    于洪传. 典型地铁路况特征识别方法研究[D]. 北京: 北京交通大学, 2016.
    任尊松. 车辆动力学基础[M]. 北京: 中国铁道出版社, 2009: 19-21.
    CHENG Junsheng, YU Dejie, YANG Yu. Research on the intrinsic mode function (IMF) criterion in EMD method[J]. Mechanical Systems and Signal Processing, 2006, 20(4): 817-824. doi: 10.1016/j.ymssp.2005.09.011
    姜涛,付志翼,王安麟. 一种非平稳随机循环工况下的参数化载荷模型[J]. 东北大学学报(自然科学版),2016,37(6): 845-850. doi: 10.3969/j.issn.1005-3026.2016.06.018

    JIANG Tao, FU Zhiyi, WANG Anlin. Parameterized load model under non-stationary random cyclic conditions[J]. Journal of Northeastern University (Natural Science), 2016, 37(6): 845-850. doi: 10.3969/j.issn.1005-3026.2016.06.018
    SWAMIA, MENDEL J M. ARMA Parameter estimation using only output cumulants[J]. IEEE Transactions on Acoustics Speed & Signal Processing, 1988, 38(7): 193-198.
    刘志明. 随机载荷下焊接构架疲劳寿命及可靠性研究[D]. 北京: 北京交通大学, 2001.
    周素霞,李福胜,谢基龙,等. 基于损伤容限的动车组车轴实测载荷谱等效应力评价[J]. 机械工程学报,2015,51(8): 131-136.

    ZHOU Suxia, LI Fusheng, XIE Jilong, et al. Equivalent stress evaluation of the load spectrum measured on the EMU axle based on damage tolerance[J]. Journal of Mechanical Engineering, 2015, 51(8): 131-136.
    薛海,李强,胡伟钢,等. 重载货车车钩疲劳试验载荷谱的编制方法[J]. 中国铁道科学,2017,38(2): 106-110.

    XUE Hai, LI Qiang, HU Weigang, et al. Compilation method for fatigue test load spectrum of coupler on heavy haul freight car[J]. China Railway Science, 2017, 38(2): 106-110.
  • Relative Articles

    [1]MENG Chuncheng, QU Daoyuan, DUAN Xiaochen. Nonlinear Prediction and Inversion of Civil Engineering Cost of Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 137-146. doi: 10.3969/j.issn.0258-2724.20230209
    [2]LIU Wei, DENG Haotian, XU Qian, RAO Xiaoming. Optimal Design of Power Supply Scheme for Sharing Resources in Urban Rail Interchange Stations[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 541-549. doi: 10.3969/j.issn.0258-2724.20230146
    [3]LIU Gehui, JIN Hua, PENG Qiyuan, LIU Ling, RAN Xinchen, LAN Zhen. Crew Rostering Schedule Optimization for Urban Rail Transit Through Resource Sharing[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 731-740. doi: 10.3969/j.issn.0258-2724.20230165
    [4]WANG Biao, QIN Yong, JIA Limin, CHENG Xiaoqing, ZENG Chunping, GAO Yifan. Monitoring Data-Driven Prediction of Remaining Useful Life of Axle-Box Bearings for Urban Rail Transit Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 229-238. doi: 10.3969/j.issn.0258-2724.20220230
    [5]WANG Tao, TAN Ji, LIU Dong, YANG Yejiang. Modeling of State-Dependent Switching System Based on Data-Driven[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 493-500. doi: 10.3969/j.issn.0258-2724.20210579
    [6]WEN Tao, XIA Wentao, ZHOU Xu, LONG Zhiqiang. Data-Driven Parameter Tuning for Maglev Train Levitation System[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 506-513. doi: 10.3969/j.issn.0258-2724.20210792
    [7]LIU Jie, CHEN Jinqu, PENG Qiyuan, YIN Yong. Reliability and Service Quality Evaluation for Urban Rail Transit Network[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 395-402, 450. doi: 10.3969/j.issn.0258-2724.20190938
    [8]LIU Fengbo, ZHOU Tingliang, WANG Xiaomin. Calculation and Evaluation Method of Passenger Flow Distribution under Urban Rail Transit Failure[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 921-927, 966. doi: 10.3969/j.issn.0258-2724.20200602
    [9]NONG Xingzhong, SHI Haiou, YUAN Quan, ZENG Wenqu, ZHENG Qing, DING Guofu. Review on BIM Technology Used in Urban Rail Transit Projects[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 451-460. doi: 10.3969/j.issn.0258-2724.20200018
    [10]ZHANG Xuexia, GAO Yuxuan, CHEN Weirong. Data-Driven Based Remaining Useful Life Prediction for Proton Exchange Membrane Fuel Cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427. doi: 10.3969/j.issn.0258-2724.20180016
    [11]LI Fang, DI Yue, CHEN Shaokuan, JIA Wenzheng. Modelling Passenger Evacuation from Metro Platforms Considering Passenger Flow Guidance and Small Group Behaviour[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 587-594. doi: 10.3969/j.issn.0258-2724.20170668
    [12]ZHOU Ning, ZOU Huan, ZOU Dong, TAN Mengying, ZHANG Weihua. Investigation on the Applicability of Pantograph and Catenary Model Urban Railway System[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 408-415,423. doi: 10.3969/j.issn.0258-2724.2017.02.026
    [13]LU Gongyuan, MA Si, WANG Kun, DENG Nian. Integer Programming Model of Passenger Flow Assignment for Congested Urban Rail lines[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 319-325. doi: 10.3969/j.issn.0258-2724.2017.02.015
    [14]LI Qunzhan. Industrial Frequency Single-Phase AC Traction Power Supply System and Its Key Technologies for Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 199-207. doi: 10.3969/j.issn.0258-2724.2015.02.001
    [15]SHANG Bin, ZHANG Xiaoning. Passenger-Flow Spatial Distribution Model of Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 539-545. doi: 10.3969/j.issn.0258-2724.2013.03.023
    [16]CHENG Jie, PENG Qiyuan, ZHAO Jun. Train Routing Optimization Model for Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2013, 26(6): 1116-1121. doi: 10.3969/j.issn.0258-2724.2013.06.023
    [17]CAI Hai-Ni, WEN Jun-Hao, JI Jie. Performance Optimization of Collaborative Design Network Based on Service-Oriented Architecture[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 603-608. doi: 10. 3969/ j. issn. 0258-2724.
    [18]SHEN Yuanxia, WANG Guoyin. Data-Driven Q-Learning in Dynamic Environment[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 877-881.
    [19]LI Bailin, HE Gang. Architecture of Collaborative Design System[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 80-83.
    [20]LIBai-lin, LUMao-hua. Role-Based Access Control ofCollaborative Design System s[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 330-333.
  • Cited by

    Periodical cited type(8)

    1. 林奔,朱涛,申天亮,左亮,王超,肖守讷. 地铁车辆车体纵向载荷及疲劳损伤特征研究. 铁道车辆. 2025(01): 87-96 .
    2. 杜洪军,于春洋,程亚军,刘春艳,姜春龙,廉帅. 抗侧滚扭杆对地铁车体横向疲劳性能影响. 大连交通大学学报. 2024(05): 49-52 .
    3. 李秋泽,单巍,张英春,杨广雪,梁树林. 中国高速动车组转向架技术发展及展望. 机车电传动. 2023(02): 14-35 .
    4. 李济棋,吕晟. 城市轨道交通车辆抗侧滚扭杆座区域裂纹成因分析及修复方案. 城市轨道交通研究. 2023(S1): 24-30 .
    5. 习文顺,任鑫焱,张金元,郭峰,吴圣川,李忠文,韩晓辉. 高速列车TC4钛合金焊接构架强度及寿命评估. 焊接学报. 2022(05): 29-35+115 .
    6. 徐宁,张波,任尊松,李强,杨超,杨广雪,陈璨. 基于运用条件和频域特征的动车组转向架构架疲劳损伤规律研究. 机械工程学报. 2022(08): 215-226 .
    7. 任尊松,曹杰,李玉怡,王斌杰,魏雪. 高速动车组构架载荷特征研究. 工程力学. 2021(02): 242-256 .
    8. 姬程翔,孙守光,杨广雪,孟庆导. 高速列车转向架构架扭转载荷特征研究. 机械工程学报. 2021(02): 147-157 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 49.4 %FULLTEXT: 49.4 %META: 45.7 %META: 45.7 %PDF: 4.9 %PDF: 4.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %其他: 0.2 %其他: 0.2 %Central District: 1.0 %Central District: 1.0 %[]: 0.5 %[]: 0.5 %上海: 2.4 %上海: 2.4 %上海市: 0.2 %上海市: 0.2 %东莞: 0.3 %东莞: 0.3 %临汾: 0.5 %临汾: 0.5 %兰州: 0.9 %兰州: 0.9 %北京: 3.1 %北京: 3.1 %北京市: 0.3 %北京市: 0.3 %十堰: 0.5 %十堰: 0.5 %南京: 0.5 %南京: 0.5 %南通: 0.2 %南通: 0.2 %合肥: 0.7 %合肥: 0.7 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.5 %哥伦布: 0.5 %唐山: 0.3 %唐山: 0.3 %喀什: 0.2 %喀什: 0.2 %大连: 1.2 %大连: 1.2 %天津: 0.9 %天津: 0.9 %宁波: 0.2 %宁波: 0.2 %巴塞罗那: 0.9 %巴塞罗那: 0.9 %常州: 1.9 %常州: 1.9 %广州: 0.3 %广州: 0.3 %张家口: 2.9 %张家口: 2.9 %成都: 0.9 %成都: 0.9 %成都市: 0.2 %成都市: 0.2 %扬州: 0.3 %扬州: 0.3 %朝阳: 1.4 %朝阳: 1.4 %杭州: 0.3 %杭州: 0.3 %株洲: 0.3 %株洲: 0.3 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.2 %武汉: 0.2 %池州: 0.7 %池州: 0.7 %沧州: 0.2 %沧州: 0.2 %法尔肯施泰因: 0.5 %法尔肯施泰因: 0.5 %深圳: 0.3 %深圳: 0.3 %漯河: 0.7 %漯河: 0.7 %眉山: 0.5 %眉山: 0.5 %石家庄: 1.5 %石家庄: 1.5 %秦皇岛: 0.2 %秦皇岛: 0.2 %舟山: 0.3 %舟山: 0.3 %芒廷维尤: 18.6 %芒廷维尤: 18.6 %芜湖: 0.3 %芜湖: 0.3 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.2 %苏州: 0.2 %莆田: 0.2 %莆田: 0.2 %西宁: 36.6 %西宁: 36.6 %运城: 0.2 %运城: 0.2 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.2 %郑州: 0.2 %重庆: 0.2 %重庆: 0.2 %长沙: 3.1 %长沙: 3.1 %青岛: 0.7 %青岛: 0.7 %其他其他Central District[]上海上海市东莞临汾兰州北京北京市十堰南京南通合肥哈尔滨哥伦布唐山喀什大连天津宁波巴塞罗那常州广州张家口成都成都市扬州朝阳杭州株洲格兰特县武汉池州沧州法尔肯施泰因深圳漯河眉山石家庄秦皇岛舟山芒廷维尤芜湖芝加哥苏州莆田西宁运城邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(495) PDF downloads(36) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return