• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
SUN Feng, XING Dazhuang, ZHOU Ran, JIN Junjie, XU Fangchao. LQR Control Strategy for Electromagnetic Active Suspension Considering Energy Consumption[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 754-760, 798. doi: 10.3969/j.issn.0258-2724.20220815
Citation: SUN Feng, XING Dazhuang, ZHOU Ran, JIN Junjie, XU Fangchao. LQR Control Strategy for Electromagnetic Active Suspension Considering Energy Consumption[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 754-760, 798. doi: 10.3969/j.issn.0258-2724.20220815

LQR Control Strategy for Electromagnetic Active Suspension Considering Energy Consumption

doi: 10.3969/j.issn.0258-2724.20220815
  • Received Date: 29 Nov 2022
  • Rev Recd Date: 19 Mar 2023
  • Available Online: 01 Jun 2023
  • Publish Date: 29 Mar 2023
  • In order to reduce the excessive power consumption of vehicle electromagnetic active suspension, a modified linear quadratic regulator (LQR) control strategy considering energy consumption was raised. Firstly, the structure of electromagnetic active suspension was introduced. The thrust model of the linear motor was established by the equivalent magnetic circuit method, and the dynamic model of electromagnetic active suspension was built. Secondly, based on the optimization model of weighting coefficients in the original LQR control strategy, a constraint condition considering energy consumption was put forward, and a modified LQR control strategy was designed. Finally, MATLAB/Simulink was adopted for simulations, and the correctness of the controller was verified by active force values. Energy consumption and dynamic performance in random road were compared. The results show that the active force value of the modified LQR control strategy meets the optimization constraint condition with a probability of 99.89%. Compared with the original LQR control strategy, the modified LQR control strategy reduces the root-mean-square (RMS) of power by 80.29%. In addition, there is no significant difference in the RMS of suspension working space, and the RMS of dynamic tyre deformation is 5% lower than that of the original LQR control strategy. The reduction of body vertical acceleration can still reach more than 50% of the original LQR control strategy.

     

  • [1]
    WEI W, ZHANG X Y, SUN F. An electromagnetic actuator for vibration control and energy recycle[J]. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2018(2018): 2P1-E13.
    [2]
    杨超,李以农,郑玲,等. 基于多目标粒子群算法的电磁主动悬架作动器优化[J]. 机械工程学报,2019,55(19): 154-166. doi: 10.3901/JME.2019.19.154

    YANG Chao, LI Yinong, ZHENG Ling, et al. Optimum of electromagnetic active suspension actuator using multi-objective particle swarm optimization algorithm[J]. Journal of Mechanical Engineering, 2019, 55(19): 154-166. doi: 10.3901/JME.2019.19.154
    [3]
    MIN X, LI Y M, TONG S C. Adaptive fuzzy output feedback inverse optimal control for vehicle active suspension systems[J]. Neurocomputing, 2020, 403: 257-267. doi: 10.1016/j.neucom.2020.04.096
    [4]
    孙凤,李华辰,单光坤,等. 磁力馈能悬架的设计与实验研究[J]. 机械科学与技术,2023,42(3): 402-407. doi: 10.13433/j.cnki.1003-8728.20200579

    SUN Feng, LI Huachen, SHAN Guangkun, et al. Design and experimental study of magnetic energy-harvesting suspension[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 402-407. doi: 10.13433/j.cnki.1003-8728.20200579
    [5]
    GU C, YIN J, LUO J, et al. Performance-oriented controls of a novel rocker-pushrod electromagnetic active vehicle suspension[J]. Mechanical Systems and Signal Processing, 2018, 109: 1-14. doi: 10.1016/j.ymssp.2018.02.019
    [6]
    LIU J, LI X J, ZHANG X L, et al. Modeling and simulation of energy-regenerative active suspension based on BP neural network PID control[J]. Shock and Vibration, 2019, 2019: 4609754.1-4609754.8.
    [7]
    KOU F R, JING Q Q, CHEN C, et al. Endocrine composite skyhook-groundhook control of electromagnetic linear hybrid active suspension[J]. Shock and Vibration, 2020, 2020: 3402168.1-3402168.17.
    [8]
    SATYANARAYANA V S V, RAO N M, SATEESH B. Parameters optimisation of vehicle suspension system for better ride comfort[J]. International Journal of Vehicle Performance, 2018, 4(2): 186-199. doi: 10.1504/IJVP.2018.090956
    [9]
    DING R K, WANG R C, MENG X P, et al. Energy consumption sensitivity analysis and energy-reduction control of hybrid electromagnetic active suspension[J]. Mechanical Systems and Signal Processing, 2019, 134: 106301.1-106301.20.
    [10]
    SHAHID Y, WEI M X. Comparative analysis of different model-based controllers using active vehicle suspension system[J]. Algorithms, 2019, 13(1): 13010010.1-13010010.15.
    [11]
    MANNA S, MAZUMDAR R. Comparative performance analysis of LQR and MPC for active suspension system[C]//2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA). Greater Noida: IEEE, 2020: 352-356.
    [12]
    MONTAZERI-GH M, KAVIANIPOUR O. Investigation of the active electromagnetic suspension system considering hybrid control strategy[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(10): 1658-1669. doi: 10.1177/0954406213511430
    [13]
    ATAEI M, ASADI E, GOODARZI A, et al. Multi-objective optimization of a hybrid electromagnetic suspension system for ride comfort, road holding and regenerated power[J]. Journal of Vibration and Control, 2017, 23(5): 782-793. doi: 10.1177/1077546315585219
    [14]
    YAMIN A H M, DARUS I Z M, NOR N S M, et al. Intelligent cuckoo search algorithm of PID and skyhook controller for semi-active suspension system using magneto-rheological damper[J]. Malaysian Journal of Fundamental and Applied Sciences, 2021, 17(4): 402-415. doi: 10.11113/mjfas.v17n4.2067
    [15]
    史文库,张曙光,陈志勇,等. 磁流变半主动座椅悬架建模及振动特性分析[J]. 西南交通大学学报,2023,58(2): 253-260.

    SHI Wenku, ZHANG Shuguang, CHEN Zhiyong, et al. Modeling and vibration analysis of semi-active seat suspension with magnetorheological damper[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 253-260.
    [16]
    韦伟. 电磁主动悬架设计与控制策略研究[D]. 沈阳: 沈阳工业大学, 2020.
    [17]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 机械振动道路路面谱测量数据报告: GB/T 7031—2005[S]. 北京: 中国标准出版社, 2006.
    [18]
    陈杰平,陈无畏,祝辉,等. 基于Matlab/Simulink的随机路面建模与不平度仿真[J]. 农业机械学报,2010,41(3): 11-15.

    CHEN Jieping, CHEN Wuwei, ZHU Hui, et al. Modeling and simulation on stochastic road surface irregularity based on Matlab/simulink[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(3): 11-15.
    [19]
    孟杰,张凯,焦洪宇. 基于遗传算法优化的汽车主动悬架LQG控制器的设计[J]. 机械科学与技术,2013,32(6): 914-918. doi: 10.13433/j.cnki.1003-8728.2013.06.030

    MENG Jie, ZHANG Kai, JIAO Hongyu. Optimal control design of the vehicle active suspension based on the genetic algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(6): 914-918. doi: 10.13433/j.cnki.1003-8728.2013.06.030
    [20]
    庄表中, 王行新. 随机振动概论[M]. 北京: 地震出版社, 1982.
  • Relative Articles

    [1]KANG Jinsong, DING Hao, NI Fei, WANG Fengxiang. Modeling of High-Speed Maglev Linear Synchronous Motors Considering Influence of Suspension System[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 729-736. doi: 10.3969/j.issn.0258-2724.20230431
    [2]ZHOU Dajin, CUI Chenyu, MA Jiaqing, ZHAO Lifeng, ZHANG Yong, ZHAO Yong. Starting Characteristics of Linear Motor in Evacuated Tube HTS Side-Suspended Maglev System[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 750-758. doi: 10.3969/j.issn.0258-2724.2016.04.021
    [3]MA Jiaqing, ZHOU Dajin, ZHAO Lifeng, ZHANG Yong, ZHAO Yong. Speed-Sensorless Vector Control of Primary Cascaded Linear Induction Motor[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 417-422. doi: 10.3969/j.issn.0258-2724.2015.03.005
    [4]QIAN Lijun, QIU Lihong, XIN Fulong. Design and Optimization of Control Strategy for Plug-in 4WD Hybrid Electric Vehicles[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1114-1121,1129. doi: 10.3969/j.issn.0258-2724.2015.06.020
    [5]WANG Gang, RONG Jian, DING Tianbao, . Optimization of Time Parameters in Static Segment in FlexRay Network[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 318-324. doi: 10.3969/j.issn.0258-2724.2012.02.024
    [6]CHEN Yanqiu, SONG Pengyun, ZHANG Jiye, ZHANG Keyue. μ-Synthesis Control for Self-powered Active Suspension of Vehicles[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 974-981. doi: 10.3969/j.issn.0258-2724.2012.06.011
    [7]XUE Feng, WANG Ciguang, ZHANG Zhanjie, 2. Optimization Algorithm for Wagon-Flow Allocation in Marshalling Station[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 932-937. doi: 10.3969/j.issn.0258-2724.2010.06.019
    [8]LI Li, CUI Dabin, JIN Xuesong. State of Arts of Research on Railway Wheel Profile Optimization[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 13-19.
    [9]CHEN Xiang, XU Bochu, ZHANG Weihua. Optimization of Seat Comfort of High-Speed Train[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 906-911.
    [10]LÜ, Xiongwei, LI Jun, LEI Ming, ZHANG Bin. Multi-objective Optimization of Stochastic Demand Inventory Routing Problem with Time Windows[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 289-294.
    [11]LI Zongping, JIANG Sai. Client Grouping in Distribution System Optimization[J]. Journal of Southwest Jiaotong University, 2006, 19(5): 594-598.
    [12]NIChang-jian, CUIPeng, XIANG Rui. Universal Immune Evolutionary Algorithm for Interval-Constrained Optim ization Problem s[J]. Journal of Southwest Jiaotong University, 2005, 18(4): 548-552.
    [13]HEXiao-qiong, WUSong-rong, WANG Feng-yan. Modeling and Optimization of V2Controller for BUCK Converters[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 485-489.
    [14]LIU Ge, LI Bai-lin. New Optimization Model of Curve Fairness[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 584-587.
    [15]GUANQin-chuan. Fuzzy Multi-objective Optimization Based on Neural Networks[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 338-342.
    [16]LIULan. Optimization Model and Application on the Design of Train Speed Control Mode on Special Railways for Passenger Transportation[J]. Journal of Southwest Jiaotong University, 2000, 13(3): 280-283.
  • Cited by

    Periodical cited type(8)

    1. 喻曹丰,张奇龙,魏益军,陈志全. 基于LQR的宏微复合驱动器宏动控制策略. 制造技术与机床. 2025(04): 113-119 .
    2. 刘秀梅,李永涛. 车辆油气悬架技术研究综述. 西南交通大学学报. 2025(02): 374-394 . 本站查看
    3. 贾存德,赵喆伟,孔祥东,张珍年,许宏宇,艾超. 时变负载下旋挖钻机行走系统抗干扰控制研究. 机械工程学报. 2025(08): 413-422 .
    4. 徐丽雯. 基于机械液压系统的汽车主动悬架控制策略研究. 汽车知识. 2025(06): 95-97 .
    5. 李仲兴,王雪,程淇谦,虞屹. 轮毂电机电动汽车空气悬架阻尼GA-LQR控制研究. 重庆理工大学学报(自然科学). 2024(03): 13-23 .
    6. 汪若尘,曾昆阳,陈龙,丁仁凯,蔡英凤. 主动悬架直线电机温升-电磁特性分析与优化设计. 重庆理工大学学报(自然科学). 2024(08): 20-29 .
    7. 谢志强,刘怡帆,王旭飞,张宁超. 汽车主动悬架系统控制方法综述. 汽车文摘. 2024(10): 14-22 .
    8. 李思原,张凝,邓羽棋,彭搏,王文迪,肖馨. 基于被囊群优化模糊PID算法的电磁主动悬架控制研究. 汽车电器. 2024(12): 36-39 .

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views(654) PDF downloads(68) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return