• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
CHEN Minwu, FU Haochun, XIE Chonghao, LIU Weidong, XU Wei. Analysis of Rail Potential Characteristics of AC/DC Dual-system Traction Power Supply System[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 729-736. doi: 10.3969/j.issn.0258-2724.20200597
Citation: LIU Youneng, HUANG Runqiu, LIU Enlong, LIAO Mengke. Influence of Freezing-Thawing Cycles on Mechanical Properties of Tailing Soil at Yunnan-Guizhou Plateau[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1052-1059. doi: 10.3969/j.issn.0258-2724.20180520

Influence of Freezing-Thawing Cycles on Mechanical Properties of Tailing Soil at Yunnan-Guizhou Plateau

doi: 10.3969/j.issn.0258-2724.20180520
  • Received Date: 16 Jul 2018
  • Rev Recd Date: 18 Mar 2019
  • Available Online: 04 Sep 2019
  • Publish Date: 01 Oct 2020
  • In order to study how the mechanical properties of tailing soil evolve during the freezing-thawing process in open environment, a series of triaxial consolidated undrained (CU) shear tests were carried out with different numbers of freezing-thawing cycles and confining pressures. In the tests, 0, 1, 5, 10 and 15 freezing-thawing cycles were set and the groups of confining pressures including 50, 100, 200 and 300 kPa were applied. Based on test results, the mechanical indexes, including the shear strength, the peak value of shear strength and elastic modulus are finally analyzed. The results indicate that the influence of freezing-thawing on mechanical properties of tailing soils is significant. As the number of freezing-thawing cycles increases, the stress-strain curves gradually transform from the strain-softening type into the work-hardening one, whereas the brittle failure pattern turns into plastic failure, and the negative growth of pore pressure during the shearing process becomes weak till disappears; the peak shear strength, cohesion, internal friction angle and elastic modulus gradually decrease; during the process, tailing soils are affected most by the first cycle of freezing-thawing, of which the effective cohesion and effective internal frictional angle is reduced by 30.55% and 6.33%, respectively; and the average reduction ratios of the peak shear strength and elastic modulus are 42.66% and 33.61%, respectively. The mechanical indexes of tailing soils tend to stabilize after 10 freezing-thawing cycles, and from 10 to 15 cycles of freezing-thawing, the effective cohesion and effective internal frictional angle are reduced by 2.94% and 0.37% respectively; and the average reduction values of the peak shear strength and elastic modulus are 2.53% and 4.03%, respectively. The mechanical indexes of 10 freezing-thawing cycles are proposed as the reference for engineering design.

     

  • 尹光志,杨作亚,魏作安,等. 羊拉铜矿尾矿料的物理力学性质[J]. 重庆大学学报(自然科学版),2007,30(9): 117-122.

    YIN Guangzhi, YANG Zuoya, WEI Zuoan, et al. Physico-mechanical properties of YangLa-copper's tailing[J]. Journal of Chongqing University (Natural Science), 2007, 30(9): 117-122.
    田文旗,谢旭阳. 我国尾矿库现状及安全对策的建议[J]. 中国矿山工程,2009,38(6): 42-49. doi: 10.3969/j.issn.1672-609X.2009.06.014

    TIAN Wenqi, XIE Xuyang. Tailing pond situation in China and safety countermeasures suggestion[J]. China Mine Engineering, 2009, 38(6): 42-49. doi: 10.3969/j.issn.1672-609X.2009.06.014
    徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001: 9-18.
    刘庭发, 张鹏伟, 胡黎明. 含硫铜矿尾矿料的工程力学特性试验研究[J]. 岩土工程学报, 2013, 35(增刊1): 166-169.

    LIU Tingfa, ZHANG Pengwei, HU Liming. Experimental study on mechanical characteristics of copper tailing materials with sulfur content[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 166-169.
    ZHANG Q, YIN G, FAN X, et al. Loading capacity and deformation characteristics of tailings based on a fractal geometrical analysis of the particle microstructure[J]. Minerals, 2015, 5(1): 86-103. doi: 10.3390/min5010086
    AUBERTIN M, RICARD J F, CHAPUIS P R. A predictive model for the water retention curve: application totailings from hard-rock mines[J]. Canadian Geotechnical Journal, 1999, 35(1): 55-69.
    RASSAM D W, WILLIAMS D J. Unsaturated hydraulic conductivity of mine tailings under wetting and drying conditions[J]. Geotechnical Testing Journal, 1999, 22(2): 138-146.
    HU L, WU H, ZHANG L, et al. Geotechnical properties of mine tailings[J]. Journal of Materials in Civil Engineering, 2016, 29(2): 04016220.1-04016220.10.
    ZHANG Z, MA W, FENG W, et al. Reconstruction of soil particle composition during freeze-thaw cycling:a review[J]. Pedosphere, 2016, 26(2): 167-179. doi: 10.1016/S1002-0160(15)60033-9
    HAZIRBABA K, GULLU H. California bearing ratio improvement and freeze-thaw performance of fine-grained soils treated with geofiber and synthetic fluid[J]. Cold Regions Science & Technology, 2010, 63(1): 50-60.
    CHANG D, LIU J K. Review of the influence of freeze-thaw cycles on the physical and mechanical properties of soil[J]. Sciences in Cold and Arid Regions, 2013, 5(4): 457-460. doi: 10.3724/SP.J.1226.2013.00457
    PARDINI G, GUIDI G V, PINI R, et al. Structure and porosity of smectiticmudrocks as affected by experimental wetting-drying cycles and freezing-thawing cycles[J]. Catena, 1996, 27(27): 149-165.
    王伟, 池旭超, 张芳, 等. 冻融循环对滨海软土三轴应力应变曲线软化特性的影响[J]. 岩土工程学报, 2013, 35(增刊2): 140-144.

    WANG Wei, CHI Xuchao, ZHANG Fang, et al. Effect of freeze-thaw circles on softening behaviors of triaxial stress-strain curve of costal soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 140-144.
    SHIBI T, KAMEI Takeshi. Effect of freeze-thaw cycles on the strength and physical properties of cement-stabilised soil containing recycled bassanite and coal ash[J]. Cold Regions Science and Technology, 2014, 106/107: 36-45. doi: 10.1016/j.coldregions.2014.06.005
    严晗, 刘建坤, 王天亮. 冻融对粉砂土力学性能影响的试验研究[J]. 北京交通大学学报, 2013, 37(4): 73-77

    YAN Han, LIU Jiankun, WANG Tianliang. Experimental research of influences of freeze-thaw on the mechanical properties of silty sand[J]. Journal of Beijing Jiaotong University, 2013, 37(4): 73-77.
    于琳琳,徐学燕,邱明国,等. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. 岩土力学,2010,31(8): 2448-2452. doi: 10.3969/j.issn.1000-7598.2010.08.016

    YU Linlin, XU Xueyan, QIU Mingguo, et al. Influence of freeze-thaw on shear strength properties of saturated silty clay[J]. Rock and Soil Mechanics, 2010, 31(8): 2448-2452. doi: 10.3969/j.issn.1000-7598.2010.08.016
    王大雁, 马巍, 常小晓, 等. 冻融循环作用对青藏粘土物理力学性质的影响[J]. 岩石力学与工程学报, 2005, 24(23): 4313-4313.

    WANG Dayan, MA Wei, CHANG Xiaoxiao, et al. Physical-mechanical properties changes of Qinghai−Tibet clay due to cyclic freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2005. 24(23): 4313-4319.
    王林,张爽,彭少波. 冻融循环条件下武汉红土物理力学性质试验研究[J]. 安全与环境工程,2012,19(3): 138-142. doi: 10.3969/j.issn.1671-1556.2012.03.034

    WANG Lin, ZHANG Shuang, PENG Shaobo. Experimental studies on red clay soil in Wuhan under freeze-thaw cycle condition[J]. Safety and Environmental Engineering, 2012, 19(3): 138-142. doi: 10.3969/j.issn.1671-1556.2012.03.034
    常丹, 刘建坤, 李旭, 等. 冻融循环对青藏粉砂土力学性质影响的试验研究[J]. 岩石力学与工程学报, 2014, 33(7): 1496-1502.

    CHANG Dan, LIU Jiankun, LI Xu, et al. Experiment study of effects of freezing-thawing cycles on mechanical properties of Qinghai−Tibet silty sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1496-1502.
    卜建清,王天亮. 冻融及细粒含量对粗粒土力学性质影响的试验研究[J]. 岩土工程学报,2015,37(4): 608-614. doi: 10.11779/CJGE201504005

    BU Jianqing, WANG Tianliang. Influences of freeze-thaw and fines content on mechanical properties of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 608-614. doi: 10.11779/CJGE201504005
    BEIER N A, SEGO D C. Cyclic freeze-thaw to enhance the stability of coal tailings[J]. Cold Regions Science & Technology, 2009, 55(3): 278-285.
    PROSKIN S, SEGO D, ALOSTAZ M. Oil sands MFT properties and freeze-thaw effects[J]. Journal of Cold Regions Engineering, 2012, 26(2): 29-54. doi: 10.1061/(ASCE)CR.1943-5495.0000034
    艾凯明,周科平,胡建华,等. 寒区尾矿力学特性的环境响应试验[J]. 矿冶工程,2004,34(3): 4-8.

    AI Kaiming, ZHOU Keping, HU Jianhua, et al. Experiment on environmental response of tailings’ mechanical properties in cold regions[J]. Mining and Meatallurgical Engineering, 2004, 34(3): 4-8.
    潘宝峰,王琰,张铁志. 无机结合料稳定铁尾矿砂冻融特性的研究[J]. 低温建筑技术,2010,32(1): 8-10. doi: 10.3969/j.issn.1001-6864.2010.01.003

    PAN Baofeng, WANG Yan, ZHANG Tiezhi. Research on freezing-thawing characteristics of inorganic binders stabilized iron tailings[J]. Low Temperature Architecture Technology, 2010, 32(1): 8-10. doi: 10.3969/j.issn.1001-6864.2010.01.003
    南京水利科学研究院. 土工试验规程: SL237—1999[S]. 北京: 中国水利水电出版社, 1999.
    肖小文, 阳军生, 王树英, 等. 第三系粉质黏土地层隧道围岩大变形分析及控制研究[J]. 铁道学报, 2015, 37(10): 110-116.

    XIAO Xiaowen, YANG Junsheng, WANG Shuying, et al. Mechanism analysis and control of large deformation of tunnel excavated in the tertiary silty clay deposit[J]. Journal of the China Railway Society, 2015, 37(10): 110-116.
    王永忠, 艾传井, 刘雄军. 冻融作用对南方粉质黏土物理力学性质的影响[J]. 地质科技情报, 2010, 29(5): 107-111.

    WANG Yongzhong, AI Chuanjing, LIU Xiongjun. Physical and mechanical properties changes of silty clay in Southern China due to freeze-thaw action[J]. Geological Science and Technology Information, 2010, 29(5): 107-111.
    LEE W, BOHRA N C, ALTSCHAEFFL A G, et al. Resilient modulus of cohesive soils and the effect of freeze-thaw[J]. Canadian Geotechnical Journal, 1995, 32(4): 559-568. doi: 10.1139/t95-059
  • Relative Articles

    [1]LIANG Jiguan, HUANG Linchong, MA Jianjun, CHEN Wanxian. Comparison of Stress-Dilatancy Rules and Research on Stress-Dilatancy Rule for Rocks[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230231
    [2]YU Yunyan, LUO Chongliang, CUI Wenhao, DU Qianzhong, GAO Yuan, ZHANG Tinghua. Heat–Mass Transfer and Salt-Frost Heave Mechanism of Saline Soil under Freeze–Thaw Cycle[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230299
    [3]LI Jin, SHI Yuefeng, XIAO Xin, LOU Liangwei, CAI Degou, XIAO Feipeng. Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 281-288. doi: 10.3969/j.issn.0258-2724.20220335
    [4]LI Fuhai, TANG Huiqi, LI Jiyun, LIU Menghui, WANG Jiangshan, CHEN Shuang, XU Tengfei. Concrete Elastic Modulus and Creep Control Based on Dense Packing Theory[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 404-412. doi: 10.3969/j.issn.0258-2724.20210431
    [5]HOU Chao, JIN Xiaoguang, HE Jie, ZHANG Chi. Research on Damage Model of Rock Under Freeze-Thaw Cycles Based on Maximum Tensile Strain Criterion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1045-1055. doi: 10.3969/j.issn.0258-2724.20210493
    [6]FENG Bo, LIU Qing, QIAN Yongjiu. Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089. doi: 10.3969/j.issn.0258-2724.20220035
    [7]XUE Gang, FU Qian, ZHOU Haifeng, SUN Lisuo. Experimental Study on Stress-Strain Relationship of Steel Slag Fine Aggregate Concrete Under Uniaxial Compression[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1165-1174. doi: 10.3969/j.issn.0258-2724.20210099
    [8]ZHANG Yafeng, ZHANG Shaohua, ZHOU Gang, ZHANG Jiyang, QING Tao, ZHOU Ningning. Strain Rate Sensitivity of Porous Cotton-Phenolic Bearing Retainer[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 847-852, 863. doi: 10.3969/j.issn.0258-2724.20190457
    [9]CUI Kai, SU Lei. Effect of Coarse Grain Content on Shear Strength of Mixed Soil in Western Sichuan[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 778-785. doi: 10.3969/j.issn.0258-2724.20180826
    [10]ZHANG Yanjun, NIAN Tingkai, WANG Liang, TANG Jun. Research on Similar Materials for Physical Model Tests of Rock Slopes[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 55-60, 72. doi: 10.3969/j.issn.0258-2724.20160366
    [11]JING Guoqing, HUANG Hongmei, SHI Xiaoyi, CAI Xiaopei. Triaxial Test and DEM Analysis of Ballast Aggregate with Angularity Breakage[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 216-221. doi: 10.3969/j.issn.0258-2724.2017.02.002
    [12]ZHU Baolong, WU Xiyong, LI Xiaoning, WEI Jiuping. Triaxial CT Tests of Meso-Structure Evolution of Remodeled Cohesive Soil in Hefei[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 144-149. doi: 10.3969/j.issn.0258-2724.2015.01.021
    [13]SUN Bing, QIU Wenge, ZHOU Chao. Experimental Investigation on Triaxial Frost Heaving Stress-Strain Relationship of Saturated Clay[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 177-180,268.
    [14]HUDe-gui, LUO Shu-xue, ZHAO Shan-rui. A DeterminationMethod of Soil ShearModulus in Pile Foundation[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 23-26.
  • Cited by

    Periodical cited type(5)

    1. 蒋婷婷,潘华利,艾一帆,熊薇. 冻融循环及含水率对冰碛土力学特性影响. 地质科技通报. 2024(02): 238-252 .
    2. 陈荣健,张诏飞,席伟,闻磊. 高寒地区尾矿库冻土分布及冻融规律研究. 金属矿山. 2023(02): 209-216 .
    3. 周婷,孙静,陈浩,王润泽,赵浩男. 冻融循环作用下石墨尾矿抗剪强度特性研究. 黑龙江大学工程学报(中英俄文). 2023(02): 65-71 .
    4. 商可,刘恩龙,黄记,张贵科,俞祁浩. 冻融循环作用下砾石土心墙土料的力学特性. 西安理工大学学报. 2022(01): 112-120 .
    5. 李军平,刘志强. 水热力耦合作用下冻融循环对冻土边坡的稳定性影响. 河南科技. 2021(31): 132-135 .

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 50.0 %FULLTEXT: 50.0 %META: 45.4 %META: 45.4 %PDF: 4.6 %PDF: 4.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.4 %其他: 3.4 %[]: 1.2 %[]: 1.2 %上海: 0.6 %上海: 0.6 %东莞: 0.2 %东莞: 0.2 %临汾: 0.4 %临汾: 0.4 %兰州: 0.6 %兰州: 0.6 %北京: 7.9 %北京: 7.9 %十堰: 0.4 %十堰: 0.4 %南京: 2.4 %南京: 2.4 %南通: 0.4 %南通: 0.4 %合肥: 1.4 %合肥: 1.4 %哈尔滨: 1.2 %哈尔滨: 1.2 %哥伦布: 0.6 %哥伦布: 0.6 %大连: 1.2 %大连: 1.2 %天津: 1.0 %天津: 1.0 %太原: 0.8 %太原: 0.8 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %廊坊: 0.2 %廊坊: 0.2 %张家口: 2.4 %张家口: 2.4 %成都: 3.8 %成都: 3.8 %扬州: 0.2 %扬州: 0.2 %无锡: 0.4 %无锡: 0.4 %昆明: 0.2 %昆明: 0.2 %杭州: 0.8 %杭州: 0.8 %武汉: 0.4 %武汉: 0.4 %江门: 0.2 %江门: 0.2 %池州: 1.8 %池州: 1.8 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.2 %济南: 0.2 %深圳: 0.4 %深圳: 0.4 %漯河: 0.4 %漯河: 0.4 %石家庄: 3.4 %石家庄: 3.4 %芒廷维尤: 20.6 %芒廷维尤: 20.6 %芝加哥: 0.4 %芝加哥: 0.4 %西宁: 35.9 %西宁: 35.9 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.0 %运城: 1.0 %郑州: 0.2 %郑州: 0.2 %鄂州: 0.6 %鄂州: 0.6 %长沙: 2.0 %长沙: 2.0 %青岛: 0.2 %青岛: 0.2 %其他[]上海东莞临汾兰州北京十堰南京南通合肥哈尔滨哥伦布大连天津太原宣城常州廊坊张家口成都扬州无锡昆明杭州武汉江门池州洛阳济南深圳漯河石家庄芒廷维尤芝加哥西宁贵阳运城郑州鄂州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views(688) PDF downloads(26) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return