Citation: | JIA Demin, WANG Xiaoyan, WANG Peilun, YU Binbin, XU Yu, CHEN Xiumin, ZHAO Jianhui. Simulation Study of Influence of Structural Parameters on Entrainment Coefficient of Ejector Based on Response Surface Method[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1167-1175. doi: 10.3969/j.issn.0258-2724.20220232 |
To analyze the significant influencing factors of the entrainment coefficient of the ejector, a two-dimensional numerical model of the compressible flow of the ejector with air as the working medium was established, and its calculation accuracy was validated by the experimental data. Meanwhile, the calculation matrix was designed by utilizing the D-optimal experimental design method. Based on the least-squares method, the response surface prediction model of the entrainment coefficient with a second-order form was constructed, and the significant parameters of the ejection coefficient and their interaction were simulated based on the constructed model. The research results show that the coincidence between the predicted and calculated values of the entrainment coefficients proves the accuracy of the response surface prediction model; the interaction between the length of the diffuser section, the mixing section length, the diameter of the mixing section, and the distance from the nozzle outlet to the inlet of the mixing section, the interaction between the mixing section diameter and mixing section length, and the interaction between the mixing section length and the diffusion angle of the diffuser section are the key factors affecting the entrainment coefficient because their
[1] |
FU W N, LIU Z L, LI Y X, et al. Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance[J]. International Journal of Thermal Sciences, 2018, 132: 509-516. doi: 10.1016/j.ijthermalsci.2018.06.033
|
[2] |
SAMAKÉ O, GALANIS N, SORIN M. On the design and corresponding performance of steam jet ejectors[J]. Desalination, 2016, 381: 15-25. doi: 10.1016/j.desal.2015.11.027
|
[3] |
CHEN W X, CHONG D T, YAN J J, et al. The numerical analysis of the effect of geometrical factors on natural gas ejector performance[J]. Applied Thermal Engineering, 2013, 59(1/2): 21-29.
|
[4] |
BANASIAK K, PALACZ M, HAFNER A, et al. A CFD-based investigation of the energy performance of two-phase R744 ejectors to recover the expansion work in refrigeration systems: an irreversibility analysis[J]. International Journal of Refrigeration, 2014, 40: 328-337. doi: 10.1016/j.ijrefrig.2013.12.002
|
[5] |
HAKKAKI-FARD A, AIDOUN Z, OUZZANE M. A computational methodology for ejector design and performance maximisation[J]. Energy Conversion and Management, 2015, 105: 1291-1302. doi: 10.1016/j.enconman.2015.08.070
|
[6] |
ZHU Y H, CAI W J, WEN C Y, et al. Numerical investigation of geometry parameters for design of high performance ejectors[J]. Applied Thermal Engineering, 2009, 29(5/6): 898-905.
|
[7] |
CHONG D T, YAN J J, WU G S, et al. Structural optimization and experimental investigation of supersonic ejectors for boosting low pressure natural gas[J]. Applied Thermal Engineering, 2009, 29(14/15): 2799-2807.
|
[8] |
NIKIFOROW K, KOSKI P, KARIMÄKI H, et al. Designing a hydrogen gas ejector for 5 kW stationary PEMFC system-CFD-modeling and experimental validation[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14952-14970. doi: 10.1016/j.ijhydene.2016.06.122
|
[9] |
王子瑞. 基于响应面法的贯流式水轮机多目标优化设计[D]. 西安: 西安理工大学, 2012.
|
[10] |
OMIDVAR A, GHAZIKHANI M, MODARRES RAZAVI S M R. Entropy analysis of a solar-driven variable geometry ejector using computational fluid dynamics[J]. Energy Conversion and Management, 2016, 119: 435-443. doi: 10.1016/j.enconman.2016.03.090
|
[11] |
LI S Y, YAN J, LIU Z, et al. Optimization on crucial ejector geometries in a multi-evaporator refrigeration system for tropical region refrigerated trucks[J]. Energy, 2019, 189: 116347.1-116347.14.
|
[12] |
BANASIAK K, HAFNER A, ANDRESEN T. Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump[J]. International Journal of Refrigeration, 2012, 35(6): 1617-1625. doi: 10.1016/j.ijrefrig.2012.04.012
|
[13] |
SOLMAZ H, ARDEBILI S M S, CALAM A, et al. Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method[J]. Energy, 2021, 227: 1205181.1-1205181.13.
|
[1] | WANG Xiaoyan, KANG Tianqin, WANG Peilun, JIA Demin, XU Yu, ZHAO Jianhui. Simulation Research on Ejector for Natural Gas Engine with High Exhaust Gas Recirculation Rate[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 467-476. doi: 10.3969/j.issn.0258-2724.20210950 |
[2] | CAI Huikun, SU Lijun, LIAO Yidai, WENG Zeju, XU Chen. Heat Dissipation Characteristics Analysis of Surface Air-Oil Heat Exchanger Applied in Aircraft Engine[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 214-220. doi: 10.3969/j.issn.0258-2724.20180964 |
[3] | ZHANG Yafeng, ZHANG Shaohua, ZHOU Gang, ZHANG Jiyang, QING Tao, ZHOU Ningning. Strain Rate Sensitivity of Porous Cotton-Phenolic Bearing Retainer[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 847-852, 863. doi: 10.3969/j.issn.0258-2724.20190457 |
[4] | TIAN Guanghui, SHEN Mingrong, YANG Ruifang, ZHANG Qingzhao, WANG Zhen. Shear Rheological Characteristics and Nonlinear Constitutive Model of Serrate Structure Surface[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1017-1025. doi: 10.3969/j.issn.0258-2724.2018.05.019 |
[5] | DENG Shasha, SHEN Huoming, LIU Lang, TANG Huaiping. Research of Calculation Method for Wave Forces Acting on Large-Scale Bridge Piers Based on Diffraction Theory[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 266-271. doi: 10.3969/j.issn.0258-2724.2018.02.007 |
[6] | ZHANG Xianmin, DONG Qian, LÜ, Yaozhi. Mechanical Responses of Pavement under Aircrafts with Different Main Landing Gears[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 675-681. doi: 10.3969/j.issn.0258-2724.2014.04.018 |
[7] | HUO Zhiqin, RU Yi, HAN Songchen. Analysis Model of Transport Aircraft Veering off Runway during Landing Phase[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 895-900. doi: 10.3969/j.issn.0258-2724.2012.05.026 |
[8] | WANG Zhen, LI Guhua, ZHANG Zejiang, HUANG Tao. Effect of Fire Fighting Water on Compressive Strength of Concrete in Tunnel Fire[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 223-227. doi: 10.3969/j.issn.0258-2724.2011.02.008 |
[9] | TAN Daiming, QI Taiyue. Sensitivity Analysis of Geoelectric Parameters in Transient Electromagnetic Method for Tunnels[J]. Journal of Southwest Jiaotong University, 2008, 21(5): 679-684. |
[10] | REN Qiliang, PENG Qiyuan. Sensitivity Analysis of Traffic Impact of Large Buildings on Traffic of Road Network[J]. Journal of Southwest Jiaotong University, 2006, 19(5): 663-668. |
[11] | WANG Feng-yan, XU Jian-ping, WU Song-rong, XU Jun-feng. Improvement ofTransientResponse Performances of M icroprocessor Voltage Regulator[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 153-157. |
[12] | JIANG Gao, SONGXue-jun, CHENDe-xin. Comprehensive EvaluationM odel for Difficulty Coefficient ofRoad Adm inistration[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 412-416. |
[13] | LIUXiu-feng, ZHANG Ai-li. H igh-DimensionalAffine Codes[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 179-183. |
[14] | FAN Li-li, WUNa, MA Yue. Parameter Analyses in the Model of Profit Sharing and Valuation of Technical Assets[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 693-697. |
[15] | ZHAO Can-hui. The Asynchronous Excitation Model for the Seismic Response Analysis of Long-Span Bridges[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 236-240. |
[16] | LIUHai-yan, SUNHong, DUWen. Sensitivity Analysis of Equilibrium Network Flow[J]. Journal of Southwest Jiaotong University, 2002, 15(4): 439-442. |
[17] | ZhangXiaoxia, Pan Wei, Luo Bin. Output Characteristics of Vertical Cavity Surface Emitting Lasers[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 480-484. |
[18] | ZHANG Xiao-Xia- , BO Wei, Luo- Bin. Output Characteristics of Vertical Cavity Surface Emitting Lasers[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 480-484. |
1. | 邹润翔,李汝宁,冯兴. 基于数据驱动的燃料电池系统引射器性能预测研究. 农业装备与车辆工程. 2025(05): 95-102 . ![]() |