• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
ZHANG Yafeng, ZHANG Shaohua, ZHOU Gang, ZHANG Jiyang, QING Tao, ZHOU Ningning. Strain Rate Sensitivity of Porous Cotton-Phenolic Bearing Retainer[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 847-852, 863. doi: 10.3969/j.issn.0258-2724.20190457
Citation: ZHANG Yafeng, ZHANG Shaohua, ZHOU Gang, ZHANG Jiyang, QING Tao, ZHOU Ningning. Strain Rate Sensitivity of Porous Cotton-Phenolic Bearing Retainer[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 847-852, 863. doi: 10.3969/j.issn.0258-2724.20190457

Strain Rate Sensitivity of Porous Cotton-Phenolic Bearing Retainer

doi: 10.3969/j.issn.0258-2724.20190457
  • Received Date: 05 Jun 2019
  • Rev Recd Date: 16 Feb 2020
  • Available Online: 23 Mar 2021
  • Publish Date: 15 Aug 2021
  • In order to study the strain rate sensitivity of porous cotton cloth-phenolic bearing retainer, the hardness and elastic modulus of the porous cotton cloth-phenolic bearing retainer were measured by nanoindenter when the strain rate ranged from 0.01 s−1 to 0.05 s−1. And then the viscoelastic properties of the materials were analyzed by Kelvin-Voigt model. The strain hardening effect and strain local softening effect of the material under different strain rates were studied. The results show that with the increase of strain rate, the hardness and elastic modulus of porous cotton cloth-phenolic material first increase and then decrease. When the strain rate increases from 0.01 s−1 to 0.05 s−1, the increase of hardness and elastic modulus of porous cotton cloth-phenolic material is related to the strain hardening phenomenon of the material. When the strain rate increases from 0.05 s−1 to 0.30 s−1, the creep displacement increases significantly, the contact stiffness decreases rapidly, the deformation is consumed in the contact interface between the indenter and the material in the form of heat, the material in the contact area of the indenter changes from viscoelasticity to viscosity, the local material viscosity decreases, and the hardness and elastic modulus decrease rapidly. The change of hardness and elastic modulus of porous cotton cloth-phenolic aldehyde with strain rate is the result of the competition between strain hardening effect and strain local softening effect.

     

  • loading
  • 黄发荣, 焦杨声. 酚醛树脂及其应用[M]. 北京: 化学工业出版社, 2003: 1-27.
    伊廷会. 高性能酚醛树脂改性研究进展[J]. 化工进展,2001,20(9): 13-16.

    YI Tinghui. Advance in the modifying research of high performance phenolic resin[J]. Chemical Industry and Engineering Progress, 2001, 20(9): 13-16.
    侯海周,胡毅亭,彭金华. 酚醛层压材料的冲击力学行为及本构模型[J]. 爆炸与冲击,2015,35(6): 858-863.

    HOU Haizhou, HU Yiting, PENG Jinhua. Dynamic behavior and constitutive model of phenolic cotton fabric material under impact loading[J]. Explosion and Shock Waves, 2015, 35(6): 858-863.
    BERTRAND P A. Oil absorption into cotton-phenolic material[J]. Journal of Materials Research, 1993, 8(7): 1749-1757. doi: 10.1557/JMR.1993.1749
    孙小波,王枫,葛世军,等. 航天长寿命轴承润滑技术[J]. 轴承,2012,3: 24-29.

    SUN Xiaobo, WANG Feng, GE Shijun, et al. Long life lubricating technology for bearing used in aerospace[J]. Bearing, 2012, 3: 24-29.
    张迪,王超,卿涛,等. 空间用多孔聚合物轴承保持架材料研究进展[J]. 机械工程学报,2018,54(9): 17-26.

    ZHANG Di, WANG Chao, QING Tao, et al. Research progress of porous polymide bearing retainer materials used in aerospace[J]. Journal of Mechanical Engineering, 2018, 54(9): 17-26.
    TRICK K A, SALIBA T E. Mechanisms of the pyrolysis of phenolic Resin in a carbon/phenolic composite[J]. Carbon, 1995, 33(11): 1509-1511. doi: 10.1016/0008-6223(95)00092-R
    KIM Y A, KAMIO S, TAJIRI T, et al. Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes[J]. Applied Physics Letters, 2007, 90(9): 27-67. doi: 10.1063/1.2710778
    黄俊钦,林有希. 耐高温改性酚醛树脂基复合摩擦材料研究进展[J]. 工程塑料应用,2014,42(1): 116-120.

    HUANG Junqin, LIN Youxi. Research progress on high temperature resistant modified phenolic resin matrix composite friction materials[J]. Engineering Plastics Application, 2014, 42(1): 116-120.
    王超,陈帅,张玉玲,等. 酚醛层压布管保持架高精密加工工艺改进[J]. 轴承,2017,12: 12-13.

    WANG Chao, CHEN Shuai, ZHANG Yuling, et al. Improvement on high precision progressing technology for cages made of phenolic cloth laminated tube[J]. Bearing, 2017, 12: 12-13.
    HEIMBS S, SCHMEER S, MIDDENDORF P. Strain rate effects in phenolic composites and phenolic-impregnated honeycomb structures[J]. Composites Science and Technology, 2007, 67(13): 2827-2837. doi: 10.1016/j.compscitech.2007.01.027
    LI D S, LU Z X, JIANG N, et al. High strain rate behavior and failure mechanism of three-dimensional five-directional carbon/phenolic braided composites under transverse compression[J]. Composites Part B Engineering, 2011, 42(2): 309-317. doi: 10.1016/j.compositesb.2010.11.011
    张国尚,荆洪阳,徐连勇,等. 纳米压痕法研究80 Au/20 Sn焊料蠕变应力指数[J]. 焊接学报,2009,30(8): 73-76.

    ZHANG Guoshang, JING Hongyang, XU Lianyong, et al. Study of on the creep stress exponent of 80 Au/20 Sn solder by nanoindentation[J]. Transactions of the China Welding Institution, 2009, 30(8): 73-76.
    贾春楠,肖革胜,袁国政,等. 纳米压入法研究无铅焊料应变率敏感性[J]. 功能材料,2015,46(1): 1046-1050.

    JIA Chunnan, XIAO Gesheng, YUAN Guozheng, et al. Nanoindentation characterization of strain rate sensitivity of lead-free solders[J]. Journal of Functional Materials, 2015, 46(1): 1046-1050.
    OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. doi: 10.1557/JMR.1992.1564
    NIX W D, GAO H. Indentation size effects in crystalline materials:a law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411-425.
    周亮,姚英学. 微纳米尺度压痕硬度尺寸效应的研究进展[J]. 哈尔滨工业大学学报,2008,40(4): 597-602.

    ZHOU Liang, YAO Yingxue. Research development of hardness indentation size effect at micro/nano scale[J]. Journal of Harbin Institute of Technology, 2008, 40(4): 597-602.
    ALMASRI A H, VOYIADJIS G Z. Effect of strain rate on the dynamic hardness in metals[J]. Journal of Engineering Materials and Technology, 2007, 129(4): 505-512. doi: 10.1115/1.2744430
    王尧,朱晓莹,刘贵民. Cu/Ni和Cu/Nb纳米多层膜的应变率敏感性[J]. 金属学报,2017,53(2): 57-65.

    WANG Yao, ZHU Xiaoying, LIU Guimin. Strain rate sensitivity of Cu/Ni and Cu/Nb nanoscale multilayers[J]. Acta Metallurgica Sinica, 2017,53(2): 57-65.
    ZHANG Y F, ZHENG J, YU J X et al. Impact of strain rate on the hardness and elastic modulus of human tooth enamel[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 78: 491-495.
    张伍连,丁辛,杨旭东. 机织建筑膜材料的广义Kelvin-Voigt蠕变模型[J]. 天津工业大学学报,2011,30(4): 19-22.

    ZHANG Wulian, DINTG Xin, YANG Xudong. General kelvin-voigt creep model of fabric architectural membrane[J]. Journal of TianJin Polytechnic University, 2011, 30(4): 19-22.
    SUN Y, SHI L P, ZHOU C L, et al. Preparation and properties of phenolic resin impregnated quartz fiber tile ablative composite[J]. Key Engineering Materials, 2016, 697(4): 28-32.
    张泰华. 微/纳米力学测试技术[M]. 北京: 科学出版社, 2013: 29-38.
    陈绪煌. 聚丙烯/茂金属催化乙烯-丙烯共聚物相结构的演变与性能[D]. 天津: 天津大学, 2007.
    魏无际. 高分子化学与物理基础[M]. 2版. 北京: 化学工业出版社, 2018: 218-242.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(467) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return