• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
YANG Fei, SUN Xianfu, TAN Shehui, ZHAO Wenbo, WEI Zilong. Evaluation Difference of Dynamic and Static Track Irregularity and Characteristics of Dynamic Chord Measurement Method[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1239-1249. doi: 10.3969/j.issn.0258-2724.20210732
Citation: YANG Fei, SUN Xianfu, TAN Shehui, ZHAO Wenbo, WEI Zilong. Evaluation Difference of Dynamic and Static Track Irregularity and Characteristics of Dynamic Chord Measurement Method[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1239-1249. doi: 10.3969/j.issn.0258-2724.20210732

Evaluation Difference of Dynamic and Static Track Irregularity and Characteristics of Dynamic Chord Measurement Method

doi: 10.3969/j.issn.0258-2724.20210732
  • Received Date: 14 Sep 2021
  • Rev Recd Date: 15 Dec 2021
  • Available Online: 02 Sep 2022
  • Publish Date: 16 Dec 2021
  • The midpoint chord method can effectively control the track irregularity of the designated band that affects the driving safety and comfort. It is mainly used to measure the track static irregularity. However, its low measurement efficiency restricts the development of track ‘state-maintenance’. To solve the above problems, the track dynamic irregularity is output according to the midpoint chord. The correlation between the dynamic and static chord measured values with the chord length and the irregularity wavelength is analyzed. The dynamic track irregularity is outputed according to the midpoint chord measurement. A dynamic chord measurement method is proposed, that can evaluate the dynamic smoothness of the track, and studies the mapping relationship between dynamic irregularity and static irregularity. The results show that, the dynamic high-pass filter amplitudes of 42 m and 70 m are equivalent to the measured values of 10 m chord and 20 m chord respectively. When the irregularity wavelength is greater than 70 m, the 120 m dynamic high-pass filter amplitude basically corresponds to the variation law of 40 m chord measured value. The track dynamic irregularities with cut-off wavelengths of 42, 70 m and 120 m have the best correlation with the dynamic chord measurement waveforms with chord lengths of 20, 30–40 m and 30–60 m respectively. The maximum reasonable chord lengths of the dynamic chord measurement method are 20, 30 m and 40 m respectively. The adaptability of the dynamic chord measurement method has been verified by the measured data of subgrade and simply supported beam sections. In the subgrade settlement section, when the chord length is 60 m, the place where the static chord measurement value deviates significantly from the dynamic chord measurement value in the negative direction is the settlement point, and the places where the adjacent two sides deviate from the dynamic chord measurement value in the positive direction are the beginning and end of the settlement section.

     

  • loading
  • [1]
    罗林, 张格明, 吴旺青, 等. 轮轨系统轨道平顺状态的控制[M]. 北京: 中国铁道出版社, 2006: 62-65
    [2]
    刘学文,杨怀志,杨飞,等. 基于动静态检测数据的轨道精测精调评价技术[J]. 铁道建筑,2019,59(9): 111-115. doi: 10.3969/j.issn.1003-1995.2019.09.27

    LIU Xuewen, YANG Huaizhi, YANG Fei, et al. Evaluation technology of track precision measurement and fine adjustment based on dynamic and static detection data[J]. Railway Engineering, 2019, 59(9): 111-115. doi: 10.3969/j.issn.1003-1995.2019.09.27
    [3]
    杨飞,刘丙强,谭社会,等. 高速铁路轨道静态几何不平顺弦测评价标准体系研究[J]. 铁道建筑,2021,61(6): 107-111,120. doi: 10.3969/j.issn.1003-1995.2021.06.24

    YANG Fei, LIU Bingqiang, TAN Shehui, et al. Research on evaluation standard system of chord measurement for track static geometric irregularity of high speed railway[J]. Railway Engineering, 2021, 61(6): 107-111,120. doi: 10.3969/j.issn.1003-1995.2021.06.24
    [4]
    田新宇,高亮,杨飞,等. 基于动态短弦的无砟轨道板周期性不平顺管理标准[J]. 中国铁道科学,2020,41(6): 30-38. doi: 10.3969/j.issn.1001-4632.2020.06.04

    TIAN Xinyu, GAO Liang, YANG Fei, et al. Management standard for cyclic irregularity of ballastless track slab based on dynamic short chord[J]. China Railway Science, 2020, 41(6): 30-38. doi: 10.3969/j.issn.1001-4632.2020.06.04
    [5]
    张国锋,高晓蓉,王黎,等. 数字逆滤波技术在轨道不平顺检测中的应用[J]. 信号处理,2004,20(6): 667-670. doi: 10.3969/j.issn.1003-0530.2004.06.030

    ZHANG Guofeng, GAO Xiaorong, WANG Li, et al. The applying of digital- inverse filtering technology in track irregularity inspection[J]. Signal Processing, 2004, 20(6): 667-670. doi: 10.3969/j.issn.1003-0530.2004.06.030
    [6]
    程樱,许玉德,周宇,等. 三点偏弦法复原轨面不平顺波形的理论及研究[J]. 华东交通大学学报,2011,28(1): 42-46. doi: 10.3969/j.issn.1005-0523.2011.01.009

    CHENG Ying, XU Yude, ZHOU Yu, et al. Theory and research of asymmetrical chord offset method of restoring a waveform of track irregularity[J]. Journal of East China Jiaotong University, 2011, 28(1): 42-46. doi: 10.3969/j.issn.1005-0523.2011.01.009
    [7]
    王源,徐金辉,陈嵘,等. 基于中点弦测法的轨道不平顺精确值数学模型研究[J]. 铁道建筑,2015,55(5): 139-143. doi: 10.3969/j.issn.1003-1995.2015.05.35

    WANG Yuan, XU Jinhui, CHEN Rong, et al. Research on mathematical model of accurate value of track irregularity based on midpoint chord measurement method[J]. Railway Engineering, 2015, 55(5): 139-143. doi: 10.3969/j.issn.1003-1995.2015.05.35
    [8]
    魏晖,朱洪涛,殷华,等. 高铁轨道平顺性的150 m/300 m校验及其快速测量[J]. 铁道工程学报,2015,32(1): 44-48,54. doi: 10.3969/j.issn.1006-2106.2015.01.009

    WEI Hui, ZHU Hongtao, YIN Hua, et al. 150 m/300 m check for the irregularities of HSR and its rapid survey[J]. Journal of Railway Engineering Society, 2015, 32(1): 44-48,54. doi: 10.3969/j.issn.1006-2106.2015.01.009
    [9]
    杨飞,赵文博,高芒芒,等. 运营期高速铁路轨道长波不平顺静态测量方法及控制标准[J]. 中国铁道科学,2020,41(3): 41-49. doi: 10.3969/j.issn.1001-4632.2020.03.05

    YANG Fei, ZHAO Wenbo, GAO Mangmang, et al. Static measurement method and control standard for long-wave irregularity of high-speed railway track during operation period[J]. China Railway Science, 2020, 41(3): 41-49. doi: 10.3969/j.issn.1001-4632.2020.03.05
    [10]
    赵文博,杨飞,李国龙,等. 高速铁路轨道平顺性静态长弦测量矢距差法数学模型推导及特性分析[J]. 铁道建筑,2020,60(2): 105-109.

    ZHAO Wenbo, YANG Fei, LI Guolong, et al. Mathematical model derivation and characteristics analysis of vector distance difference method for static long chord measurement of high speed railway[J]. Railway Engineering, 2020, 60(2): 105-109.
    [11]
    魏世斌,李颖,赵延峰,等. GJ-6型轨道检测系统的设计与研制[J]. 铁道建筑,2012,52(2): 97-100. doi: 10.3969/j.issn.1003-1995.2012.02.030
    [12]
    魏晖,朱洪涛,吴维军,等. 高速铁路长波不平顺的相对测量整道[J]. 铁道建筑,2014,54(8): 95-98. doi: 10.3969/j.issn.1003-1995.2014.08.29
    [13]
    魏晖,朱洪涛,赵国堂,等. 基于中点弦测模型的无砟轨道精调量迭代求解[J]. 西南交通大学学报,2015,50(1): 131-136. doi: 10.3969/j.issn.0258-2724.2015.01.019

    WEI Hui, ZHU Hongtao, ZHAO Guotang, et al. Iterative algorithm of HSR ballastless track realignment calculation based on MCO model[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 131-136. doi: 10.3969/j.issn.0258-2724.2015.01.019
    [14]
    中华人民共和国铁道部. 高速铁路无砟轨道线路维修规则(试行): TG/GW 115—2012 [S]. 北京: 中国铁道出版社, 2012.
    [15]
    杨飞,吴细水,孙宪夫,等. 钢轨轧制不平顺激扰下的动车组动力响应特性[J]. 西南交通大学学报,2022,57(2): 267-276,294.

    YANG Fei, WU Xishui, SUN Xianfu, et al. Dynamic response characteristics of EMU under excitation of rail straightening irregularity[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 267-276,294.
    [16]
    NAGANUMA Y, KOBAYASHI M, OKUMURA T. Inertial measurement processing techniques for track condition monitoring on Shinkansen commercial trains[J]. Journal of Mechanical Systems for Transportation and Logistics, 2010, 3(1): 315-325. doi: 10.1299/jmtl.3.315
    [17]
    魏世斌,刘伶萍,刘维桢,等. 提速线路轨道长波不平顺检测技术[J]. 中国铁道科学,2010,31(2): 141-144.

    WEI Shibin, LIU Lingping, LIU Weizhen, et al. Technology for the measurement of long-wavelength track irregularity of speed-up railway[J]. China Railway Science, 2010, 31(2): 141-144.
    [18]
    HAIGERMOSER A, LUBER B, RAUH J, et al. Road and track irregularities: measurement, assessment and simulation[J]. Vehicle System Dynamics, 2015, 53(7): 878-957. doi: 10.1080/00423114.2015.1037312
    [19]
    中国国家铁路集团有限公司. 铁路基础设施动态检测——轨道几何检测系统: Q/CR 751—2020[S]. 北京: 中国铁道出版社, 2020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article views(590) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return