• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
YANG Fei, HAO Xiaoli, YANG Jian, SUN Xianfu, GAO Yansong, ZHANG Yu. Track Condition Evaluation for Multi-vehicle Performance Prediction Model Based on Convolutional Neural Network and Gated Recurrent Unit[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 322-331. doi: 10.3969/j.issn.0258-2724.20211030
Citation: YANG Fei, HAO Xiaoli, YANG Jian, SUN Xianfu, GAO Yansong, ZHANG Yu. Track Condition Evaluation for Multi-vehicle Performance Prediction Model Based on Convolutional Neural Network and Gated Recurrent Unit[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 322-331. doi: 10.3969/j.issn.0258-2724.20211030

Track Condition Evaluation for Multi-vehicle Performance Prediction Model Based on Convolutional Neural Network and Gated Recurrent Unit

doi: 10.3969/j.issn.0258-2724.20211030
  • Received Date: 14 Dec 2021
  • Rev Recd Date: 16 Jun 2022
  • Available Online: 19 Nov 2022
  • Publish Date: 14 Jul 2022
  • The dynamic transmission characteristics of different types of high-speed track inspection vehicles are different, which makes the evaluation results of vehicle body acceleration on the same railway line different. To solve the above problem, the convolutional neural network (CNN) is combined with the gated recurrent unit (GRU) to establish a dynamic response prediction model for multi-vehicle dynamic response, which predicts the vertical and lateral acceleration of each vehicle by inputting a number of measured track irregularities and vehicle speeds, and uses the maximum envelope of the predicted values of multi-vehicle acceleration as the basis for track state evaluation. The results show that the model with eight track irregularities and vehicle speed, such as longitudinal irregularity, horizontal irregularity, as input parameters has the best prediction performance, and the evaluation indices of vertical and lateral vehicle acceleration prediction are increased by 5%–13% and 25%–36%, respectively. The vehicle acceleration predicted by the CNN-GRU model is in good agreement with the measured results in both time domain and frequency domains, with the maximum correlation coefficient of 0.902. Compared with back propagation (BP) neural network, CNN-GRU improves the evaluation indices of vertical and lateral vehicle acceleration prediction by 36%–109% and 11%–167%, respectively. The application result in a section with poor track geometry state shows that four out of the six vehicle types reach the level Ⅰ or Ⅱ overrun of the vehicle vertical acceleration, and one vehicle type reaches the level Ⅰ overrun of the vehicle lateral acceleration, which improves the accuracy and consistency of the track state evaluation.

     

  • loading
  • [1]
    刘金朝,刘秀波. 轨道质量状态评价方法[J]. 铁路技术创新,2012(1): 106-109. doi: 10.19550/j.issn.1672-061x.2012.01.030
    [2]
    关庆华,赵鑫,温泽峰,等. 基于Hertz接触理论的法向接触刚度计算方法[J]. 西南交通大学学报,2021,56(4): 883-890.

    GUAN Qinghua, ZHAO Xin, WEN Zefeng, et al. Calculation method of hertz normal contact stiffness[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 883-890.
    [3]
    LUBER B. Railway track quality assessment method based on vehicle system identification[J]. e & i Elektrotechnik und Informationstechnik, 2009, 126(5): 180-185.
    [4]
    LUBER B, HAIGERMOSER A, GRABNER G. Track geometry evaluation method based on vehicle response prediction[J]. Vehicle System Dynamics, 2010, 48(S1): 157-173.
    [5]
    FURUKAWA A, YOSHIMURA A. A method to predict track geometry-induced vertical vehicle motion[J]. Quarterly Report of RTRI, 2004, 45(3): 142-148. doi: 10.2219/rtriqr.45.142
    [6]
    FURUKAWA A. A method to predict vertical vehicle motion caused by track irregularities[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(4): 431-443. doi: 10.1177/0954409716634394
    [7]
    LI M X D, BERGGREN E G, BERG M, et al. Assessing track geometry quality based on wavelength spectra and track-vehicle dynamic interaction[J]. Vehicle System Dynamics, 2008, 46(S1): 261-276.
    [8]
    BERGGREN E G, LI M X D, SPÄNNAR J. A new approach to the analysis and presentation of vertical track geometry quality and rail roughness[J]. Wear, 2008, 265(9/10): 1488-1496.
    [9]
    LI M X D, BERGGREN E G, BERG M. Assessment of vertical track geometry quality based on simulations of dynamic track-vehicle interaction[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(2): 131-139. doi: 10.1243/09544097JRRT220
    [10]
    WANG J K, HE Y L, LU H Y, et al. Study on vibration acceleration prediction model of track inspection vehicle based on BP neural network[J]. IOP Conference Series: Materials Science and Engineering, 2018, 435: 012041.1-012041.8.
    [11]
    LI D, MEDDAH A, HASS K, et al. Relating track geometry to vehicle performance using neural network approach[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2006, 220(3): 273-281. doi: 10.1243/09544097JRRT39
    [12]
    徐磊,陈宪麦. 轨道不平顺作用下铁路列车车体振动状态的PCA-SVM预测分析[J]. 铁道学报,2014,36(7): 16-23. doi: 10.3969/j.issn.1001-8360.2014.07.003

    XU Lei, CHEN Xianmai. PCA-SVM forecast of car-body vibration states of railway locomotives and vehicles under the action of track irregularities[J]. Journal of the China Railway Society, 2014, 36(7): 16-23. doi: 10.3969/j.issn.1001-8360.2014.07.003
    [13]
    耿松,柴晓冬,郑树彬. 基于递阶神经网络的轨道车辆振动状态预测[J]. 城市轨道交通研究,2015,18(12): 94-98. doi: 10.16037/j.1007-869x.2015.12.021

    GENG Song, CHAI Xiaodong, ZHENG Shubin. Prediction of rail transit vehicle vibration state based on hierarchical neural network[J]. Urban Mass Transit, 2015, 18(12): 94-98. doi: 10.16037/j.1007-869x.2015.12.021
    [14]
    李立明,柴晓冬,郑树彬. 基于径向基函数神经网络的轨道交通车辆振动状态预测[J]. 城市轨道交通研究,2017,20(12): 18-21. doi: 10.16037/j.1007-869x.2017.12.005

    LI Liming, CHAI Xiaodong, ZHENG Shubin. Prediction of rail vehicle vibration state based on radial basis function nerve network[J]. Urban Mass Transit, 2017, 20(12): 18-21. doi: 10.16037/j.1007-869x.2017.12.005
    [15]
    刘秀波, 马帅, 高利民, 等. 基于轨道几何和LSTM的车辆响应预测模型[C]//第十三届全国振动理论及应用学术会议. 西安: 中国振动工程学会, 2019: 15-21.
    [16]
    MA S, GAO L, LIU X B, et al. Deep learning for track quality evaluation of high-speed railway based on vehicle-body vibration prediction[J]. IEEE Access, 2019, 7: 185099-185107. doi: 10.1109/ACCESS.2019.2960537
    [17]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    [18]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [19]
    CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: Association for Computational Linguistics, 2014: 1724-1734
    [20]
    CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2021-11-10]. https://arxiv.org/abs/1412.3555.
    [21]
    康熊,刘秀波,李红艳,等. 高速铁路无砟轨道不平顺谱[J]. 中国科学(技术科学),2014,44(7): 687-696. doi: 10.1360/N092014-00088

    KANG Xiong, LIU Xiubo, LI Hongyan, et al. PSD of ballastless track irregularities of high-speed railway[J]. Scientia Sinica (Technologica), 2014, 44(7): 687-696. doi: 10.1360/N092014-00088
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article views(420) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return