Citation: | CUI Hongchao, HAN Shida, LI Chen, ZHANG Jiajia, LI Decai. Design of Automatic Flotation Separation Structure Based on First-Order Buoyancy of Magnetic Liquids[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 947-956. doi: 10.3969/j.issn.0258-2724.20210723 |
To determine the mineral separation process for the non-magnetic material precision sorting problem based on the first-order buoyancy of a magnetic fluid, this study examines the stress of non-magnetic objects immersed in a magnetic fluid by changing the distance between the permanent magnet and the magnetic fluid when the permanent magnet is used as a magnetic source. A structural model of automatic flotation separation is then designed. In the design plan, the lifting stroke of the electric scissor lift platform used for the lifting of the magnetic source was 100 mm; different magnetic field strengths can be provided to the magnetic liquid by lifting the magnetic source. Accordingly, a Cartesian robot and an end effector are designed to separate the non-magnetic materials to salvage and separate non-magnetic objects suspended at different heights. Then, the ANSYS Maxwell software is used to conduct two-dimensional and three-dimensional simulations of the design situation. The approximately calculated first-order buoyancy of the non-magnetic objects provides a certain basis for the design of the lifting platform’s load-bearing capacity. The results show that the suspension height of the specified non-magnetic cylinder in the magnetic liquid is 60–70 mm from the bottom of the container according to the simulation data calculation, which provides a theoretical basis for the design of a flotation separation device. A cylindrical permanent magnet with a height of 30 mm and a radius of 80 mm is used to provide the magnetic field. Converting the first-order buoyancy of the non-permeable magnet into density, the density range of the non-permeable magnet that can be floated using this design is approximately 1.65 × 103‒ 6.66 × 103 kg/m3.
[1] |
李德才. 磁性液体密封理论及应用[M]. 北京: 科学出版社, 2010.
|
[2] |
谢君,李德才,朱锐棋. 霍尔式磁性液体微压差传感器的设计及特性研究[J]. 仪器仪表学报,2020,41(6): 27-34. doi: 10.19650/j.cnki.cjsi.J202006
XIE Jun, LI Decai, ZHU Ruiqi. Design and characteristic research on the magnetic fluid micro-pressure difference sensor based on Hall elements[J]. Chinese Journal of Scientific Instrument, 2020, 41(6): 27-34. doi: 10.19650/j.cnki.cjsi.J202006
|
[3] |
MANDEL K, STRAßER M, GRANATH T, et al. Surfactant free superparamagnetic iron oxide nanoparticles for stable ferrofluids in physiological solutions[J]. Chemical Communications (Cambridge, England), 2015, 51(14): 2863-2866. doi: 10.1039/C4CC09277E
|
[4] |
谢君,鲁妍池,刘宇童,等. 磁性液体触觉传感器的设计及特性研究[J]. 仪器仪表学报,2021,42(1): 30-38. doi: 10.19650/j.cnki.cjsi.J2007150
XIE Jun, LU Yanchi, LIU Yutong, et al. Design and characteristics research on the magnetic fluid tactile sensor[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 30-38. doi: 10.19650/j.cnki.cjsi.J2007150
|
[5] |
翟耀,杨文荣,吴佳男,等. 纳米磁流体磁性能与一阶磁浮力的研究[J]. 功能材料,2018,49(11): 11107-11113.
ZHAI Yao, YANG Wenrong, WU Jianan, et al. Study on magnetic performance and first order buoyancy of nano magnetic fluids[J]. Journal of Functional Materials, 2018, 49(11): 11107-11113.
|
[6] |
ZHU T T, MARRERO F, MAO L D. Continuous separation of non-magnetic particles inside ferrofluids[J]. Microfluidics and Nanofluidics, 2010, 9(4/5): 1003-1009.
|
[7] |
LEE J H, NAM Y J, PARK M K. Magnetic fluid actuator based on passive levitation phenomenon[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(3): 283-290. doi: 10.1177/1045389X11399487
|
[8] |
QIAN L P, LI D C, YU J. Study of the second-order levitation force in the magnetic fluid accelerometer[J]. IEEE Sensors Journal, 2015, 15(12): 6805-6810. doi: 10.1109/JSEN.2015.2464686
|
[9] |
何新智,毕树生,李德才,等. 磁性液体二阶浮力原理的实验研究[J]. 功能材料,2012,43(21): 3023-3027. doi: 10.3969/j.issn.1001-9731.2012.21.034
HE Xinzhi, BI Shusheng, LI Decai, et al. Experimental study on the second-order buoyancy of magnetic fluid[J]. Journal of Functional Materials, 2012, 43(21): 3023-3027. doi: 10.3969/j.issn.1001-9731.2012.21.034
|
[10] |
李艳琴. 磁性液体一阶磁浮力原理实验研究[J]. 大学物理,2014,33(7): 24-29. doi: 10.16854/j.cnki.1000-0712.2014.07.016
LI Yanqin. Experimental study of first-order magnetic buoyancy for ferrofluid[J]. College Physics, 2014, 33(7): 24-29. doi: 10.16854/j.cnki.1000-0712.2014.07.016
|
[11] |
南进喜, 叶盛旗, 曾位勇, 等. 一种矿业用铁磁流体静力分选机装置: CN212916118U[P]. 2021-04-09.
|
[12] |
张应强,魏镜弢,吴张永,等. 非磁性矿粒在磁流体静力分选中的力学模型[J]. 有色金属(选矿部分),2013(4): 49-52.
ZHANG Yingqiang, WEI Jingtao, WU Zhangyong, et al. Mechanical model of non-magnetic mineral particles in magneto hydrostatic static separation[J]. Nonferrous Metals (Mineral Processing Section), 2013(4): 49-52.
|
[13] |
荀勇. 实现磁性和非磁性物质分离的方法: CN102641777A[P]. 2015-10-28.
|
[14] |
刘桂雄, 蒲尧萍, 徐晨. 磁流体浸没物磁场力分析及磁浮特性[C]//第六届中国功能材料及其应用学术会议. 武汉: [出版者不祥], 2007: 4.
|
[15] |
李冬旭. 一种磁性矿物分选装置: CN210646586U[P]. 2020-06-02.
|
[16] |
姚杰. 基于铁磁流体第一类悬浮特性的新型动力吸振器研究[D]. 北京: 北京交通大学, 2018.
|
[17] |
马宏宇. 磁性液体一阶浮力原理的应用基础研究[D]. 北京: 北京交通大学, 2018.
|
[18] |
成大先. 机械设计手册[M]. 北京: 化学工业出版社, 2017.
|