Citation: | YU Wenjuan, LI Decai, ZHANG Zhili. Magnetic Fluid Sealing Structure of Integrated Pole Shoe[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 940-946. doi: 10.3969/j.issn.0258-2724.20210936 |
Magnetic fluid seal of integrated pole shoe has promising prospect. To study the factors affecting its pressure resistance, the structural parameters of the integrated pole shoe are analyzed. First, the pressure resistance formula of the magnetic fluid sealing structure is deduced. Second, the finite element simulation is used to analyze the pressure performance of the magnetic fluid seal structure, in terms of thin-wall presence, thin-wall thickness, axial distance between pole teeth and thin wall, and the distribution ratio of multi-stage pole shoe size. Finally, the magnetic fluid sealing device of integrated pole shoe was made, and an experimental platform was built. The results show that the pressure resistance of the integrated pole shoe is slightly smaller than that of the traditional pole shoe, but the difference is trivial; the thin wall thickness and the axial distance between pole teeth and the thin wall are inversely proportional to the pressure resistance of the sealing structure; for the multi-stage pole shoe structure, the length of the pole shoe between the magnets is longer than the pole shoe length on both sides, which is more conducive to the pressure resistance of the magnetic fluid seal.
[1] |
CHARLES S W, POPPLEWELL J. Properties and applications of magnetic liquids[J]. Endeavour, 1982, 6(4): 153-161. doi: 10.1016/0160-9327(82)90070-9
|
[2] |
李德才. 磁性液体的理论及应用[M]. 北京: 科学出版社, 2003.
|
[3] |
ROSENSWEIG R E. Ferrohydrodynamics[M]. Cambridge: Cambridge University Press, 1985: 344.
|
[4] |
池长青, 王之珊, 赵丕智. 铁磁流体力学[M]. 北京: 北京航空航天大学出版社, 1993.
|
[5] |
何新智,苗玉宾,王礼,等. 磁性液体密封液体技术的进展简述[J]. 真空科学与技术学报,2019,39(5): 361-366. doi: 10.13922/j.cnki.cjovst.2019.05.01
HE Xinzhi, MIAO Yubin, WANG Li, et al. Brief introduction to the progress of magnetic fluid sealing fluid technology[J]. Journal of Vacuum Science and Technology, 2019, 39(5): 361-366. doi: 10.13922/j.cnki.cjovst.2019.05.01
|
[6] |
李德才,郝都. 磁性液体旋转密封的关键问题研究进展[J]. 真空科学与技术学报,2018,38(7): 564-574. doi: 10.13922/j.cnki.cjovst.2018.07.04
LI Decai, HAO Du. Research progress on key issues of magnetic fluid rotary seals[J]. Journal of Vacuum Science and Technology, 2018, 38(7): 564-574. doi: 10.13922/j.cnki.cjovst.2018.07.04
|
[7] |
CHEN Y B, LI D C, ZHANG Y J, et al. Numerical analysis and experiment study of magnetic fluid boundary in seals[J]. Journal of Magnetics, 2018, 23(2): 293-299. doi: 10.4283/JMAG.2018.23.2.293
|
[8] |
陈一镖. 高速工况下磁性液体密封的研究[D]. 北京: 北京科技大学, 2019.
|
[9] |
ZHANG Y J, CHEN Y B, LI D C, et al. Experimental validation and numerical simulation of static pressure in multi-stage ferrofluid seals[J]. IEEE Transactions on Magnetics, 2019, 55(3): 1-8. doi: 10.1109/TMAG.2019.2898030
|
[10] |
CHEN J W, LI D C, HAO D. Investigation on the influence of temperature on starting torque of magnetic fluid seal[J]. Journal of Magnetics, 2018, 23(3): 436-441. doi: 10.4283/JMAG.2018.23.3.436
|
[11] |
ROSENSWEIG R E. Ferrohydrodynamics[M]. NewYork: Dover Publications, 2002: 307-323.
|
[12] |
李德才. 磁性液体密封理论及应用[M]. 北京: 科学出版社, 2010: 174-177.
|
[13] |
LI Z X, LI S X, WANG X, et al. Numerical simulation and experimental study on magnetorheological fluid seals with flexible pole pieces[J]. IEEE Transactions on Magnetics, 2021, 57(10): 1-7.
|
[14] |
兵器工业无损检测人员技术资格鉴定考核委员会. 常用钢材磁特性曲线速查手册[M]. 北京: 机械工业出版社, 2003: 53-55.
|