• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WEI Chuntao, ZHANG Dongmei. Feature Matching Method of Oblique Images Based on Geometric Constraints[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 353-360. doi: 10.3969/j.issn.0258-2724.20210662
Citation: WEI Chuntao, ZHANG Dongmei. Feature Matching Method of Oblique Images Based on Geometric Constraints[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 353-360. doi: 10.3969/j.issn.0258-2724.20210662

Feature Matching Method of Oblique Images Based on Geometric Constraints

doi: 10.3969/j.issn.0258-2724.20210662
  • Received Date: 12 Aug 2021
  • Rev Recd Date: 02 Dec 2021
  • Available Online: 06 Sep 2023
  • Publish Date: 31 Mar 2022
  • A feature point and line hierarchical matching method is proposed, suitable for oblique images to solve the challenges of large angle in view transformation, a few matches due to repeated texture, and low matching accuracy. Firstly, the line features of images derive from the line extraction (detection) algorithm (LineSegmentDector), follow constraints to pair, and construct line pair regions to match the improved SIFT feature descriptor. Secondly, after RANSAC algorithm eliminates mismatches, the epipolar constraint acts upon the initial matching results. Then, the obtained lines correct the local image, and the corrected local image uses SIFT matching, which contributes to calculating the original image reversely. The obtained matching points are used to globally correct the oblique image, and the feature points are matched; the grid-based motion statistics (GMS) algorithm eliminates the mismatches; the matching results go through reverse calculation and return to the original image. The line matching results and the point expanding matching results combine into final results, showing that the matching accuracy of the proposed method is close to that of ASIFT, but the number of matching is 1-3 times it.

     

  • [1]
    余美. 倾斜立体影像匹配若干问题研究[D]. 徐州: 中国矿业大学, 2018.
    [2]
    LOWE D G. Distinctive image feature from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [3]
    MA J, CHAN C W, CANTERS F. Fully automatic subpixel image registration of multiangle CHRIS/Proba data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2829-2839.
    [4]
    MOREL J M, YU G. ASIFT: a new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 438-469. doi: 10.1137/080732730
    [5]
    YU G, MOREL J M. ASIFT: an algorithm for fully affine invariant comparison[J]. Image Processing on Line, 2011, 1: 11-38. doi: 10.5201/ipol.2011.my-asift
    [6]
    LI K, YAO J. Line segment matching and reconstruction via exploiting coplanar cues[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 125: 33-49. doi: 10.1016/j.isprsjprs.2017.01.006
    [7]
    GIOIR RAFAEL G V, JAKUBOWICZ J , MOREL J M, et al. LSD: a fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722-732.
    [8]
    FAN B, WU F, HU Z. Robust line matching through line-point invariants[J]. Pattern Recognition, 2012, 45(2): 794-805. doi: 10.1016/j.patcog.2011.08.004
    [9]
    MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60(1): 63-86. doi: 10.1023/B:VISI.0000027790.02288.f2
    [10]
    MIKOLAJCZYK K, TUYTEIAARS T, SCHMID C, et al. A comparison of affine region detectors[J]. International Journal of Computor Vision, 2005, 65: 43-72. doi: 10.1007/s11263-005-3848-x
    [11]
    姚国标,邓喀中,艾海滨,等. 倾斜立体影像自动准稠密匹配与三维重建算法[J]. 武汉大学学报(信息科学版),2014,39(7): 843-849.

    YAO Guobiao, DENG Kazhong, AI Haibin, et al. An algorithm of automatic quasi-dense matching and three-dimensional reconstruction for oblique stereo images[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 843-849.
    [12]
    余美,邓喀中,杨化超,等. 基于WαSH局部特征的立体影像匹配[J]. 中国矿业大学学报,2018,47(3): 685-690.

    YU Mei, DENG Kazhong, YANG Huachao, et al. Stereo images matching based on WαSH local features[J]. Journal of China University of Mining & Technology, 2018, 47(3): 685-690.
    [13]
    肖雄武,郭丙轩,李德仁,等. 一种具有仿射不变性的倾斜影像快速匹配方法[J]. 测绘学报,2015,44(4): 414-421.

    XIAO Xiongwu, GUO Bingxuan, LI Deren, et al. A quick and affine invariance matching method for oblique images[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4): 414-421.
    [14]
    YU Yinian, HUANG Kaiqi, CHEN Wei, et al. A novel algorithm for view and illumination invariant image matching[J]. IEEE Transactions on Image Processing, 2011, 21(1): 229-240.
    [15]
    XIAO X W, GUO B X, SHI Y R, et al. Robust and rapid matching of oblique UAV images of urban area[C]//Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Wuhan: SPIE, 2013: 223-230.
    [16]
    LI K, YAO J , XIA M H, et al. Joint point and line segment matching on wide-baseline stereo images[C]//2016 IEEE Winter Conference on Applications of Computer Vision (WACV). New York: IEEE, 2016: 1-9.
    [17]
    陈敏,朱庆,何海清,等. 面向城区宽基线立体像对视角变化的结构自适应特征点匹配[J]. 测绘学报,2019,48(9): 1129-1140.

    CHEN Min, ZHU Qing, HE Haiqing, et al. Structureadaptive feature point matching for urban area wide-baseline images with viewpoint variation[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1129-1140.
    [18]
    张平,王竞雪. 直线对几何特征约束的近景影像特征匹配[J]. 遥感信息,2020,35(4): 124-132.

    ZHANG Ping, WANG Jingxue. Line matching for close-range images with geometry features of line pairs[J]. Remote Sensing Information, 2020, 35(4): 124-132.
    [19]
    RAGURAM R, CHUM O, POLLEFEYS M, et al. USAC: a universal framework for random sample consensus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 2022-2038.
    [20]
    王竞雪,朱庆,王伟玺. 顾及拓扑关系的立体影像直线特征可靠匹配算法[J]. 测绘学报,2017,46(11): 1850-1858.

    WANG Jingxue, ZHU Qing, WANG Weixi. Reliable line matching algorithm for stereo images with topological relationship[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11): 1850-1858.
    [21]
    RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 2564-2571.
    [22]
    LEVI G, HASSNER T. LATCH: learned arrangements of three patch codes[C]//2016 IEEE Winter Conference on Applications of Computer Vision (WACV). NewYork: IEEE, 2016: 1-9.
    [23]
    李卓,刘洁瑜,李辉,等. 基于ORB-LATCH的特征检测与描述算法[J]. 计算机应用,2017,37(6): 1759-1762.

    LI Zhuo, LIU Jieyu, LI Hui, et al. Feature detection and description algorithm based on ORB-LATCH[J]. Journal of Computer Applications, 2017, 37(6): 1759-1762.
    [24]
    BIAN J W, LIN W Y, MATSUSHITA Y, et al. GMS: grid-based motion statistics for fast, ultra-robust feature correspondence[J]. International Journal of Computer Vision, 2020, 128(6): 1580-1593. doi: 10.1007/s11263-019-01280-3
    [25]
    MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
    [26]
    SONG W H, JUNG H G, GWAK I Y, et al. Oblique aerial image matching based on iterative simulation and homography evaluation[J]. Pattern Recognition, 2019, 87: 317-331.
    [27]
    杨蒙蒙,张爱华. 基于灰度共生矩阵和同步正交匹配追踪的分形图像压缩[J]. 计算机应用,2021,41(5): 1445-1449.

    YANG Mengmeng, ZHANG Aihua. Fractal image compression based on gray-level co-occurrence matrix and simultaneous orthogonal matching pursuit[J]. Journal of Computer Applications, 2021, 41(5): 1445-1449.
    [28]
    SARLIN P E, DETONE D, MALISIEWICZ T, et al. Superglue: Learning feature matching with graph neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4938-4947.
  • Relative Articles

    [1]Zhang Min, Luo Shujuan, Cao Yi, Luo Shihui. End Effect and Electromagnetic Force Characteristics of Two Adjacent Linear Induction Motors[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240250
    [2]ZHU Qing, SHANG Qisen, HU Han, YU Haojia, ZHONG Ruofei, DING Yulin. Feature Line Extraction from 3D Model of Oblique Photogrammetry Based on Multi-Objective Weighted Shortest Path[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 116-122. doi: 10.3969/j.issn.0258-2724.20180248
    [3]SONG Zhanfeng, GUO Jiejia, LI Jun. Fitting a Straight-Line to Data Points with Correlated Noise Between Coordinate Components under Constraints[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1283-1289. doi: 10.3969/j.issn.0258-2724.20200120
    [4]ZHU Qing, WENG Qiqiang, HU Han, WANG Feng, WANG Weixi, YANG Weijun, ZHANG Pengcheng. Multi-View Image Precise Texture Mapping Method Based on Frame Buffer[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 269-278. doi: 10.3969/j.issn.0258-2724.20170878
    [5]CAO Licong, ZHOU Yuzhe, MA Donghua, LIU Feicheng, ZHANG Jianjing. Large Shaking Table Test on Seismic Response of Site with Tilted Interlayer[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 953-961. doi: 10.3969/j.issn.0258-2724.20170748
    [6]YE Yuanxin, SHEN Li. Performance Evaluation of Interest Point Detectors for Remote Sensing Image Matching[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1170-1176. doi: 10.3969/j.issn.0258-2724.2016.06.017
    [7]ZHANG Shuaiyi, LI Yongshu, CAI Guolin. Aerial Image Registration Based on Bayesian Decision Theory[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 161-166. doi: 10.3969/j.issn.0258-2724.2015.01.024
    [8]JIANG Lei, LI Xiangbiao, MA Shuwen, ZHOU Liangming, LI Qiqin, DUAN Changde. Registration Method for Point Cloud Based on Feature of One Plane and Two Cylindrical Holes[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1090-1096. doi: 10.3969/j.issn.0258-2724.2014.06.023
    [9]HE Jing, LI Yongshu, LI Xin, TANG Min. Registration Method for Unmanned Aerial Vehicle Images Based on Point Feature and Edge Feature[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 955-961. doi: 10.3969/j.issn.0258-2724.2012.06.008
    [10]DENGYuehua, TANGJianxin, ZHUXiangke, FUYong, HU Hai. Industrial Test of Concrete Packing for Gob-Side Entry Retained in Gently-Inclined Medium-Thickness Coal Seam[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 523-528. doi: 10.3969/j.issn.0258-2724.2011.03.028
    [11]TANG Min, LI Yong-Shu, HE Jing. Relative Orientation Method of UAV Images without Ground Control Points[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 808-813. doi: 10.3969/j.issn.0258-2724.2011.05.016
    [12]LIN Xiancheng, 2, LI Yongshu. Classification Research on Object-Oriented High-Resolution Remote Sensing Images in Chengdu Plain[J]. Journal of Southwest Jiaotong University, 2010, 23(3): 366-372. doi: 10. 3969/ j. issn. 0258-2724.
    [13]LU Heng, LI Yong-Shu, LI He-Chao, HE Jing, REN Zhi-Ming. Digital Processing of Unmanned Aerial Vehicle Image and Its Application in Reconstruction of Wenchuan Earthquake-Hit Areas[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 533-538. doi: 10. 3969/ j. issn. 0258-2724.
    [14]XU Xiaohui, CAO Yu, ZHANG Jiye. Global Exponential Synchronization of Impulsive Chaotic Neural Networks[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 887-892.
    [15]RENDian-bo, ZHANG Ji-ye. G lobalExponential Stability of a C lass of Interconnected Large-Scale System swith Time Delays[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 343-346.
    [16]TANXiao-hui, ZHANG Ji-ye, YANG Yi-ren. G lobalExponential Stability ofHopfield NeuralNetworks[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 338-342.
    [17]HE You-quan, FANGLei. Computer Transmission and Processing of Medical Images[J]. Journal of Southwest Jiaotong University, 2003, 16(3): 267-270.
    [18]ZHANG Ji-ye, YANG Yi-ren, ZENG Jing. Global Stability of Delayed Hopfield Neural Network Models[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 522-525.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 49.1 %FULLTEXT: 49.1 %META: 44.2 %META: 44.2 %PDF: 6.7 %PDF: 6.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.4 %其他: 17.4 %China: 0.2 %China: 0.2 %上海: 0.9 %上海: 0.9 %东莞: 0.6 %东莞: 0.6 %六安: 0.1 %六安: 0.1 %兰州: 0.2 %兰州: 0.2 %内江: 0.1 %内江: 0.1 %凉山: 0.1 %凉山: 0.1 %北京: 3.9 %北京: 3.9 %十堰: 0.2 %十堰: 0.2 %南京: 0.4 %南京: 0.4 %南宁: 0.2 %南宁: 0.2 %南昌: 0.4 %南昌: 0.4 %南通: 0.1 %南通: 0.1 %南阳: 0.1 %南阳: 0.1 %厦门: 0.3 %厦门: 0.3 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大庆: 0.2 %大庆: 0.2 %大连: 0.1 %大连: 0.1 %天津: 1.7 %天津: 1.7 %宣城: 0.5 %宣城: 0.5 %宿迁: 0.1 %宿迁: 0.1 %常德: 0.2 %常德: 0.2 %广州: 0.4 %广州: 0.4 %廊坊: 0.6 %廊坊: 0.6 %张家口: 0.6 %张家口: 0.6 %德阳: 0.3 %德阳: 0.3 %成都: 1.5 %成都: 1.5 %扬州: 1.2 %扬州: 1.2 %抚州: 0.2 %抚州: 0.2 %拉斯维加斯: 0.1 %拉斯维加斯: 0.1 %新加坡: 0.4 %新加坡: 0.4 %新竹: 0.1 %新竹: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.6 %昆明: 0.6 %曼谷: 0.1 %曼谷: 0.1 %杭州: 1.3 %杭州: 1.3 %桂林: 0.2 %桂林: 0.2 %武汉: 2.1 %武汉: 2.1 %汕头: 0.1 %汕头: 0.1 %池州: 1.1 %池州: 1.1 %沈阳: 0.7 %沈阳: 0.7 %法兰克福: 0.3 %法兰克福: 0.3 %泰安: 0.1 %泰安: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济宁: 0.4 %济宁: 0.4 %深圳: 1.1 %深圳: 1.1 %温州: 0.3 %温州: 0.3 %湘潭: 0.1 %湘潭: 0.1 %漯河: 1.7 %漯河: 1.7 %烟台: 0.1 %烟台: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 1.4 %石家庄: 1.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %绍兴: 0.4 %绍兴: 0.4 %芒廷维尤: 25.6 %芒廷维尤: 25.6 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.1 %苏州: 0.1 %莆田: 0.3 %莆田: 0.3 %莫斯科: 0.1 %莫斯科: 0.1 %蒙特利尔: 0.1 %蒙特利尔: 0.1 %衡水: 0.3 %衡水: 0.3 %襄阳: 0.2 %襄阳: 0.2 %西宁: 13.5 %西宁: 13.5 %西安: 0.4 %西安: 0.4 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 4.2 %贵阳: 4.2 %运城: 0.9 %运城: 0.9 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.9 %郑州: 0.9 %重庆: 0.6 %重庆: 0.6 %金华: 0.2 %金华: 0.2 %银川: 0.3 %银川: 0.3 %长沙: 3.8 %长沙: 3.8 %青岛: 1.0 %青岛: 1.0 %黄冈: 0.1 %黄冈: 0.1 %其他China上海东莞六安兰州内江凉山北京十堰南京南宁南昌南通南阳厦门合肥哈尔滨哥伦布嘉兴大庆大连天津宣城宿迁常德广州廊坊张家口德阳成都扬州抚州拉斯维加斯新加坡新竹无锡昆明曼谷杭州桂林武汉汕头池州沈阳法兰克福泰安洛阳济宁深圳温州湘潭漯河烟台盐城石家庄福州秦皇岛绍兴芒廷维尤芜湖芝加哥苏州莆田莫斯科蒙特利尔衡水襄阳西宁西安诺沃克贵阳运城邯郸郑州重庆金华银川长沙青岛黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views(454) PDF downloads(67) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return