• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
CUI Xiaolu, BAO Pengyu, CHEN Jiaxin, YANG Zongchao. Rail Friction Self-Excited Vibration in Braking Section of High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 141-149. doi: 10.3969/j.issn.0258-2724.20210173
Citation: SONG Qinghui, XIAO Linjing, JIANG Haiyan, LIU Xiujie, YAN Fangping. Longitudinal Vibration Characteristics of Deep Sea Mining Pipe Based on ABAQUS[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 821-829. doi: 10.3969/j.issn.0258-2724.20210389

Longitudinal Vibration Characteristics of Deep Sea Mining Pipe Based on ABAQUS

doi: 10.3969/j.issn.0258-2724.20210389
  • Received Date: 12 May 2021
  • Rev Recd Date: 27 Sep 2021
  • Publish Date: 21 Oct 2021
  • In order to study the longitudinal vibration characteristics of the stepped lifting pipe with a complex structure under the action of the ocean current and mining vessel heave motion, the longitudinal vibration performance of a 5000 m long lifting pipe was analyzed using the vibration theory of continuous elastic rod. Firstly, a mathematical model of the longitudinal vibration of the lifting pipe was established according to the D’Alembert principle, and the natural frequency equation of the pipeline was derived by the method of separating variables. Then, the mass normalization of the vibration mode was carried out. Finally, a finite element model of the lifting pipe was established using ABAQUS software to study the longitudinal dynamic response of the pipeline. The results show that the first-order longitudinal resonance frequency of the lifting pipe is in the frequency band where the wave energy is concentrated in the mining area. With an increase in the buffer mass, the natural frequency of the lifting pipe decreases gradually, and the influence of the buffer mass on the high-order natural frequencies becomes more obvious. With the wave frequency increasing, the longitudinal amplitude, axial force and axial stress first increase and then decrease, and reach their peaks at the first-order natural frequency, which occurs at 5000, 0 and 1000 m along the lifting pipe length, respectively. As the heave amplitude of the mining vessel increases, the dynamic response of the lifting pipe increases gradually; after the heave amplitude is greater than 1.5 m, the growth rate of the dynamic response of the lifting pipe slows down. When the first-order longitudinal resonance occurs in the lifting pipe, the vibration displacement and axial force first increase and then make constant-amplitude steady-state oscillation. With the increase of seawater depth, the vibration amplitude along the length of the pipe increases gradually, the vibration equilibrium position moves down, and the vibration response time is delayed; meanwhile, the axial force and axial stress decrease gradually, and the axial stress between each pipe string segment increases sharply.

     

  • [1]
    韩春杰. 深水平台钻井钻柱耦合振动及模拟分析[D]. 大庆: 大庆石油学院, 2010.
    [2]
    WU Q, YANG J M, LU H N, et al. Effects of heave motion on the dynamic performance of vertical transport system for deep sea mining[J]. Applied Ocean Research, 2020, 101: 102188. doi: 10.1016/j.apor.2020.102188
    [3]
    WANG Y B, GAO D, FANG J. Longitudinal vibration analysis of marine riser during installation and hangoff in ultra deepwater[J]. Computer Modeling in Engineering & Sciences, 2016, 111(4): 357-373.
    [4]
    WANG S W, XU X S, LU X. Movement optimization of freely-hanging deepwater risers in reentry[J]. Ocean Engineering, 2016, 116: 32-41. doi: 10.1016/j.oceaneng.2016.02.029
    [5]
    LIU J, ZHAO H L, LIU Q Y, et al. Dynamic behavior of a deepwater hard suspension riser under emergency evacuation conditions[J]. Ocean Engineering, 2018, 150: 138-151. doi: 10.1016/j.oceaneng.2017.12.050
    [6]
    THORSEN M J, CHALLABOTLA N R, SAEVIK S, et al. A numerical study on vortex-induced vibrations and the effect of slurry density variations on fatigue of ocean mining risers[J]. Ocean Engineering, 2019, 174: 1-13. doi: 10.1016/j.oceaneng.2019.01.041
    [7]
    邱显焱,汤迎红. 附加单个动力吸振器的扬矿子系统纵向振动仿真分析研究[J]. 机械强度,2014,36(3): 335-339.

    QIU Xianyan, TANG Yinghong. Simulation study of longitudinal vibration for lifting pipe with single dynamic vibration absorber[J]. Journal of Mechanical Strength, 2014, 36(3): 335-339.
    [8]
    肖林京,左帅,于志豪. 深海采矿扬矿管的纵向振动分析[J]. 科学技术与工程,2020,20(18): 7213-7219.

    XIAO Linjing, ZUO Shuai, YU Zhihao. Longitudinal vibrations analysis of lifting pipe in deep-sea mining[J]. Science Technology and Engineering, 2020, 20(18): 7213-7219.
    [9]
    肖林京,刘强,梁彬. 基于波流联合作用的深海采矿扬矿管纵向振动分析[J]. 矿业研究与开发,2019,39(11): 147-150.

    XIAO Linjing, LIU Qiang, LIANG Bin. Longitudinal vibration analysis of hoisting pipe in deep-sea mining based on combination action of wave and current[J]. Mining Research and Development, 2019, 39(11): 147-150.
    [10]
    LIU Q, XIAO L J. Analysis and research on longitudinal vibration characteristics of deep sea mining pipe based on finite element method[J]. Mathematical Problems in Engineering, 2020, 3: 8219794.1-8219794.18.
    [11]
    SPARKS C. Transverse modal vibrations of vertical tensioned risers. a simplified analytical approach[J]. Oil & Gas Science and Technology, 2002, 57(1): 71-86.
    [12]
    SOLTANAHMADI A. Determination of flexible riser natural frequencies using Fourier analysis[J]. Marine Structures, 1992, 5(2/3): 193-203.
    [13]
    CHENG Y, VANDIVER J K, MOE G. The linear vibration analysis of marine risers using the wkb-based dynamic stiffness method[J]. Journal of Sound and Vibration, 2002, 251(4): 750-760. doi: 10.1006/jsvi.2001.3843
    [14]
    XI L Y, LI X F, TANG G J. Free vibration of standing and hanging gravity-loaded Rayleigh cantilevers[J]. International Journal of Mechanical Sciences, 2013, 66: 233-238. doi: 10.1016/j.ijmecsci.2012.11.013
    [15]
    WU Q, YANG J M, GUO X X, et al. Influence of irregular waves on the dynamic response of a vertical transport system for deep sea mining[J]. Ocean Engineering, 2021, 229: 108443.1-108443.18.
    [16]
    王明峰. 深海采矿船运动模拟平台系统控制方法研究[D]. 长沙: 中南大学, 2012.
    [17]
    SONG Q H, JIANG H Y, SONG Q J, et al. Vibration characteristics and reduction analysis of lifting pipe under ocean current[J]. Shock and Vibration, 2021, 2021: 2778243.1-2778243.20.
    [18]
    CHEN W M, LI M, GUO S X, et al. Dynamic analysis of coupling between floating top-end heave and riser’s vortex-induced vibration by using finite element simulations[J]. Applied Ocean Research, 2014, 48: 1-9. doi: 10.1016/j.apor.2014.07.005
    [19]
    操芹,夏鹏飞,汪轲,等. 基于模态分析的某皮卡发动机罩分析方法研究[J]. 汽车实用技术,2015(5): 1-3,6. doi: 10.3969/j.issn.1671-7988.2015.05.001

    CAO Qin, XIA Pengfei, WANG Ke, et al. Based on modal analysis of a pickup hood analysis method research[J]. Automobile Applied Technology, 2015(5): 1-3,6. doi: 10.3969/j.issn.1671-7988.2015.05.001
    [20]
    王文明. ABAQUS有限元分析与案例精通: 在海洋石油工程中的应用[M]. 北京: 机械工业出版社, 2017.
  • Relative Articles

    [1]FENG Xiaohang, CHEN Guangxiong, MEI Guiming, DONG Bingjie, ZHAO Pengpeng, LI Xianhang. Frictional Self-Excited Vibration of a Metro Pantograph-Catenary System[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220873
    [2]DONG Bingjie, CHEN Guangxiong, FENG Xiaohang, REN Wenjuan, SONG Qifeng, MEI Guiming. Vibration Fatigue Fracture Mechanism of e-Type Clip Under Rail Corrugation Excitation[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230707
    [3]SONG Qifeng, CHEN Guangxiong, DONG Bingjie, ZHANG Juncai, FENG Xiaohang. Cause of Rail Corrugation on Ladder Sleeper Track[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230573
    [4]CUI Xiaolu, TANG Chuanping, BAO Pengyu, QI Wei, LI Junda. Rail Corrugation Suppressing Method on Braking Sections of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 656-664. doi: 10.3969/j.issn.0258-2724.20220256
    [5]LIU Yumei, CHEN Yun, ZHAO Congcong, XIONG Mingye. Vibration Evaluation and Reliability Analysis of High-Speed Train Transmission System Based on Kernel Density Estimator and Markov Model[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 783-790, 796. doi: 10.3969/j.issn.0258-2724.20200542
    [6]XIAO Hong, CHEN Xin, ZHAO Yue. Analysis of Unilateral Rail Corrugation Mechanism Based on Friction Self-Excited Theory[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 83-89, 119. doi: 10.3969/j.issn.0258-2724.20200033
    [7]WANG Dongwei, WU Xiao, XIANG Zaiyu, MO Jiliang. Investigation on Thermo-Mechanical Coupling Characteristics of Disc Brake System of High-Speed Train[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 428-436. doi: 10.3969/j.issn.0258-2724.20190879
    [8]CUI Xiaolu, HUANG Bo, CHEN Guangxiong. Research on Multi-Parameter Fitting of Fastener Structures to Suppress Wheel-Rail Friction Self-Excited Vibration[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 68-74. doi: 10.3969/j.issn.0258-2724.20190023
    [9]WU Bowen, CHEN Guangxiong, ZHAO Xiaonan, ZHU Qi, KANG Xi. Formation Mechanisim of Rail Corrugation Occurring on Tight Curved Track with Vanguard Fasteners[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 650-657. doi: 10.3969/j.issn.0258-2724.20180371
    [10]WU Zeng, LIU Xueyi, YAO Lingkan. Fractal Description of Rail Corrugation and Its Dynamic Simulation[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 721-725.
    [11]ZHANG Li-min. Analysis of Wheel/Rail Contact Stresses and Rail Corrugation[J]. Journal of Southwest Jiaotong University, 2003, 16(1): 34-37.
    [12]LiXiaozhen, QiangShizhong. Coupling Vibration Analysis for Long Span Steel Cable- Stayed Bridge Crossing over Yangtze River at Nanjing on Beijing-Shanghai High-Speed Railway[J]. Journal of Southwest Jiaotong University, 1999, 12(2): 153-157.
  • Cited by

    Periodical cited type(5)

    1. 朱瑞丹,刘方平,何冬康,项载毓. 压电悬臂梁结构参数对摩擦自激振动能量收集的影响. 机械设计. 2025(03): 132-142 .
    2. 刘继宗,张祖涛,王浩,孔苓吉,伊敏熠,朱忠尹. 城轨交通制动能量利用技术研究现状与展望. 西南交通大学学报. 2024(06): 1322-1345 . 本站查看
    3. 崔晓璐,唐传平,包鹏羽,漆伟,李君达. 高速列车制动区段钢轨波磨抑制方法. 西南交通大学学报. 2023(03): 656-664 . 本站查看
    4. 陈宪麦,陈楠,魏子龙,杨飞,尤明熙. 基于离散元法的钢轨力学性能定性分析. 中南大学学报(自然科学版). 2023(05): 2030-2038 .
    5. 刘方平,朱瑞丹,何冬康,项载毓. 基于压电悬臂梁振动能量收集器的摩擦自激振动能量收集. 机械设计与研究. 2023(06): 219-226+230 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-03010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.0 %FULLTEXT: 30.0 %META: 64.6 %META: 64.6 %PDF: 5.4 %PDF: 5.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %其他: 0.6 %其他: 0.6 %Central District: 0.5 %Central District: 0.5 %Huddersfield: 0.2 %Huddersfield: 0.2 %上海: 0.8 %上海: 0.8 %东莞: 0.8 %东莞: 0.8 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %保定: 0.3 %保定: 0.3 %兰州: 0.6 %兰州: 0.6 %北京: 13.0 %北京: 13.0 %十堰: 0.9 %十堰: 0.9 %南京: 0.8 %南京: 0.8 %南昌: 0.2 %南昌: 0.2 %台北: 0.3 %台北: 0.3 %台州: 0.2 %台州: 0.2 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %墨尔本: 0.2 %墨尔本: 0.2 %天津: 1.4 %天津: 1.4 %安庆: 0.2 %安庆: 0.2 %安康: 0.2 %安康: 0.2 %宣城: 0.6 %宣城: 0.6 %张家口: 1.7 %张家口: 1.7 %成都: 1.9 %成都: 1.9 %扬州: 0.6 %扬州: 0.6 %揭阳: 0.2 %揭阳: 0.2 %新乡: 0.2 %新乡: 0.2 %昆明: 0.3 %昆明: 0.3 %杭州: 0.9 %杭州: 0.9 %株洲: 0.2 %株洲: 0.2 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.2 %武汉: 0.2 %池州: 0.3 %池州: 0.3 %沈阳: 0.9 %沈阳: 0.9 %济南: 0.2 %济南: 0.2 %淮南: 0.2 %淮南: 0.2 %温州: 0.3 %温州: 0.3 %漯河: 1.7 %漯河: 1.7 %烟台: 0.2 %烟台: 0.2 %石家庄: 1.1 %石家庄: 1.1 %福州: 0.2 %福州: 0.2 %芒廷维尤: 9.1 %芒廷维尤: 9.1 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.2 %苏州: 0.2 %衡阳: 1.1 %衡阳: 1.1 %衢州: 0.2 %衢州: 0.2 %西宁: 36.2 %西宁: 36.2 %西安: 0.2 %西安: 0.2 %诺沃克: 0.5 %诺沃克: 0.5 %贵阳: 0.6 %贵阳: 0.6 %运城: 1.1 %运城: 1.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 6.0 %郑州: 6.0 %重庆: 2.8 %重庆: 2.8 %长沙: 0.6 %长沙: 0.6 %青岛: 0.5 %青岛: 0.5 %黄石: 0.2 %黄石: 0.2 %其他其他Central DistrictHuddersfield上海东莞临汾乌鲁木齐保定兰州北京十堰南京南昌台北台州哈尔滨嘉兴墨尔本天津安庆安康宣城张家口成都扬州揭阳新乡昆明杭州株洲格兰特县武汉池州沈阳济南淮南温州漯河烟台石家庄福州芒廷维尤芜湖芝加哥苏州衡阳衢州西宁西安诺沃克贵阳运城邯郸郑州重庆长沙青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article views(336) PDF downloads(21) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return