• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LIU Pengfei, LIU Hongjun, GAO Hao, REN Zunsong, ZHANG Kailong. Elastic Vibration of Wheelset and Its Dynamic Effect on Railway Heavy-Haul Freight Wagon[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 90-98, 234. doi: 10.3969/j.issn.0258-2724.20210024
Citation: LIU Pengfei, LIU Hongjun, GAO Hao, REN Zunsong, ZHANG Kailong. Elastic Vibration of Wheelset and Its Dynamic Effect on Railway Heavy-Haul Freight Wagon[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 90-98, 234. doi: 10.3969/j.issn.0258-2724.20210024

Elastic Vibration of Wheelset and Its Dynamic Effect on Railway Heavy-Haul Freight Wagon

doi: 10.3969/j.issn.0258-2724.20210024
  • Received Date: 11 Jan 2021
  • Accepted Date: 17 Nov 2021
  • Rev Recd Date: 04 May 2021
  • Available Online: 22 Nov 2021
  • Publish Date: 12 May 2021
  • To study the characteristics of wheelset elastic vibration and their effect on the dynamic performance of heavy-haul freight wagon, a railway wagon with a 30 t axle load is considered as the research object in this work. The running stability and the curving performance of vehicle are investigated in a comparative manner. First, the mathematical modeling method of elastic body based on multi-body dynamics is presented. Then, a finite element model of wheelset’s flexible body is established, and the elastic vibration modes are analyzed. The flexible wheelset is integrated in to the multi-rigid-body system, which then forms the rigid-flexible coupling dynamic model of heavy-haul wagon. Finally, for the multi-rigid body and rigid-flexible coupling modeling methods used for the wagon, the differences in wheelset vibration responses, running stability, and curving performance characteristics determined by these methods for a heavy-haul wagon were compared when using the main-line track irregularity with short-wave irregularity as the excitation source. The research results indicate that the deformation of elastic wheelset can alleviate the wheel-rail impact and also weaken the wheel-rail rigid restraining effect when compared with rigid wheelset. Therefore, the vibration amplitude for the flexible wheelset is reduced and the vehicle’s nonlinear critical speed is decreases by 9%. In sharp curves, the wheel-rail lateral force of flexible wheelset is reduced by 13.7%. The influence of wheelset’s elastic vibration on the dynamic performance of the heavy-haul wagon thus can not be ignored.

     

  • [1]
    钟硕乔. 车辆轨道耦合系统中的旋转柔性轮对建模研究[D]. 成都: 西南交通大学, 2017.
    [2]
    PENG B, IWNICKI S, SHACKLETON P, et al. The influence of wheelset flexibility on polygonal wear of locomotive wheels[J]. Wear, 2019, 432/433: 102917.1-102917.11.
    [3]
    BAEZA L, GINER-NAVARRO J, THOMPSON D J, et al. Eulerian models of the rotating flexible wheelset for high frequency railway dynamics[J]. Journal of Sound and Vibration, 2019, 449: 300-314. doi: 10.1016/j.jsv.2019.03.002
    [4]
    崔潇,姚建伟,胡晓依,等. 欧拉坐标系下柔性轮对旋转效应对轮轨力的影响[J]. 中国铁道科学,2019,40(4): 120-128. doi: 10.3969/j.issn.1001-4632.2019.04.15

    CUI Xiao, YAO Jianwei, HU Xiaoyi, et al. Rotation effect of flexible wheelset on wheel-rail force in Euler coordinate system[J]. China Railway Science, 2019, 40(4): 120-128. doi: 10.3969/j.issn.1001-4632.2019.04.15
    [5]
    FOURIE D, FRÖHLING R, HEYNS S. Railhead corrugation resulting from mode-coupling instability in the presence of veering modes[J]. Tribology International, 2020, 152: 106499. doi: 10.1016/j.triboint.2020.106499
    [6]
    CRUCEANU I C, SOROHAN Ș. Determination of the harmonic response of a railway wheelset using the finite element analysis method[J]. Procedia Manufacturing, 2020, 46: 173-179. doi: 10.1016/j.promfg.2020.03.026
    [7]
    李国芳,岳鹏,丁旺才,等. 轮对柔性对车辆动态曲线通过性能的影响研究[J]. 铁道标准设计,2019,63(9): 173-179.

    LI Guofang, YUE Peng, DING Wangcai, et al. Research on the influence of flexibility wheelset on vehicle dynamic curve passing performance[J]. Railway Standard Design, 2019, 63(9): 173-179.
    [8]
    张波,罗光兵,蒋忠城,等. 柔性结构对车辆运动稳定性的影响[J]. 技术与市场,2019,26(6): 5-8.

    ZHANG Bo, LUO Guangbing, JIANG Zhongcheng, et al. The influence of flexible structure on vehicle dynamic stability[J]. Technology and Market, 2019, 26(6): 5-8.
    [9]
    杨云帆,周青,巩磊,等. 轮对柔性对直线电机车辆动态响应的影响分析[J]. 西南交通大学学报,2020,55(6): 1313-1319. doi: 10.3969/j.issn.0258-2724.20180866

    YANG Yunfan, ZHOU Qing, GONG Lei, et al. Influence of wheelset flexibility on dynamic response of linear induction motor vehicles[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1313-1319. doi: 10.3969/j.issn.0258-2724.20180866
    [10]
    金学松,吴越,梁树林,等. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报,2018,53(1): 1-14. doi: 10.3969/j.issn.0258-2724.2018.01.001

    JIN Xuesong, WU Yue, LIANG Shulin, et al. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14. doi: 10.3969/j.issn.0258-2724.2018.01.001
    [11]
    杨润芝,曾京. 高阶车轮多边形对轮轨系统振动影响分析[J]. 振动与冲击,2020,39(21): 101-110.

    YANG Runzhi, ZENG Jing. Influences of higher order wheel polygon on vibration of wheel-rail system[J]. Journal of Vibration and Shock, 2020, 39(21): 101-110.
    [12]
    王相平,王红兵,贾文慧,等. 车轮扁疤对高速车辆动态曲线通过性能的影响[J]. 铁道科学与工程学报,2020,17(9): 2198-2207.

    WANG Xiangping, WANG Hongbing, JIA Wenhui, et al. The influence of wheel flat on the performance of high-speed vehicle dynamic on railway curve negotiation[J]. Journal of Railway Science and Engineering, 2020, 17(9): 2198-2207.
    [13]
    刘国云,曾京,邬平波,等. 车轮扁疤所引起的车辆系统振动特性分析[J]. 机械工程学报,2020,56(8): 182-189. doi: 10.3901/JME.2020.08.182

    LIU Guoyun, ZENG Jing, WU Pingbo, et al. Vibration characteristic analysis of vehicle systems due to wheel flat[J]. Journal of Mechanical Engineering, 2020, 56(8): 182-189. doi: 10.3901/JME.2020.08.182
    [14]
    杨广雪,赵方伟,李秋泽,等. 高速列车轮轨接触几何参数对轮轨磨耗的影响研究[J]. 铁道学报,2019,41(2): 50-56.

    YANG Guangxue, ZHAO Fangwei, LI Qiuze, et al. Study of influences of high-speed train wheel-rail contact geometric parameters on wheel-rail wear[J]. Journal of the China Railway Society, 2019, 41(2): 50-56.
    [15]
    魏世明. 30 t轴重货车HFZ915铸钢车轮的研发[J]. 电力机车与城轨车辆,2016,39(1): 58-60.

    WEI Shiming. Research and development of HFZ915 cast steel wheel for 30 t axle-load freight car[J]. Electric Locomotives & Mass Transit Vehicles, 2016, 39(1): 58-60.
    [16]
    吴毅,刘鑫贵,项彬,等. 重载铁路货车用LZ45CrV车轴钢综合性能的试验研究[J]. 中国铁道科学,2015,36(2): 68-72. doi: 10.3969/j.issn.1001-4632.2015.02.10

    WU Yi, LIU Xingui, XIANG Bin, et al. Experimental study on the comprehensive performance of LZ45CrV axle steel for heavy haul freight car[J]. China Railway Science, 2015, 36(2): 68-72. doi: 10.3969/j.issn.1001-4632.2015.02.10
    [17]
    国家铁路局. 铁道车辆轮对及轴承型式与基本尺寸: TB/T 1010—2016 [S]. 北京: 中国铁道出版社, 2016.
    [18]
    翟婉明. 车辆-轨道耦合动力学[M]. 4版. 北京: 科学出版社, 2015.
    [19]
    刘鹏飞,王开云,翟婉明. 长大列车通过弹性曲线轨道仿真求解方法研究[J]. 西南交通大学学报,2018,53(1): 31-37. doi: 10.3969/j.issn.0258-2724.2018.01.004

    LIU Pengfei, WANG Kaiyun, ZHAI Wanming. Simulation solution method for long and heavy-haul trains negotiating elastic curved tracks[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 31-37. doi: 10.3969/j.issn.0258-2724.2018.01.004
    [20]
    李亨利,李芾,傅茂海,等. 斜楔摩擦减振器建模及动力学分析[J]. 铁道科学与工程学报,2015,12(5): 1191-1199. doi: 10.3969/j.issn.1672-7029.2015.05.031

    LI Hengli, LI Fu, FU Maohai, et al. Dynamic modeling and simulation of wedges friction damper[J]. Journal of Railway Science and Engineering, 2015, 12(5): 1191-1199. doi: 10.3969/j.issn.1672-7029.2015.05.031
    [21]
    王勇,曾京,张卫华. 铁道货车非线性稳定性[J]. 交通运输工程学报,2002,2(2): 36-40. doi: 10.3321/j.issn:1671-1637.2002.02.009

    WANG Yong, ZENG Jing, ZHANG Weihua. Nonlinear stability of railway freight cars[J]. Journal of Traffic and Transportation Engineering, 2002, 2(2): 36-40. doi: 10.3321/j.issn:1671-1637.2002.02.009
    [22]
    国家铁路局. 铁路线路设计规范: TB 10098—2017[S].北京: 中国铁道出版社, 2017.
  • Relative Articles

    [1]YANG Chunlei, WANG Kaiyun. Simulation Calculation Method and Application for Relative Displacement of Heavy Hall Freight Suspension on Curved Track[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1008-1016. doi: 10.3969/j.issn.0258-2724.20210158
    [2]YU Zhixiang, HU Guanghua, LI Tongmei, FENG Dubei. Analysis of Vibration Reduction and Vibration Measurement for Long-Span Railway Station Floor Slab[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 296-303, 342. doi: 10.3969/j.issn.0258-2724.20170746
    [3]LI Jincheng, DING Junjun, WU Pengpeng, YANG Yang, LI Fu. Analysis of Dynamics and Wheel Wear of Low Floor Vehicle Based on Different Patterns[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 14-22. doi: 10.3969/j.issn.0258-2724.20170757
    [4]YANG Chunlei, HUANG Yunhua, LI Fu. Comparative Study on the Curving Performance of Chinese Railway Heavy Haul Freight Bogies[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 619-625. doi: 10.3969/j.issn.0258-2724.20180178
    [5]WANG Boming, CHEN Hongyu, LI Zhize, TAN Hongyuan. Curve-Passing Dynamic Performance of Portal Bogie with Forced Steering Mechanism[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 91-97. doi: 10.3969/j.issn.0258-2724.2016.01.014
    [6]YANG Chun-Lei, LI Fei, HUANG Yun-Hua. Optimization ofP rimary Vertical Suspension of Heavy Haul Freight Car[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 820-825.
    [7]ZHOU Ning, ZHANG Weihua. Dynamic Performances of Pantograph-Catenary System with Double Pantographs[J]. Journal of Southwest Jiaotong University, 2009, 22(4): 552-557.
    [8]MA Weihua, LUO Shihui, SONG Rongrong. Improvement of Dynamic Performance of Speed-Raising Locomotive with Motor Mounted on Frame[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 84-88.
    [9]WANG Yong-guan, CHENKang. Effects ofCrosswinds on Curve Negotiation ofH igh-Speed Power Cars[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 224-227.
    [10]WANG Yong, L Ke-wei, GUO Xiao-feng, CHEN Bao-shun. Dynamic Behaviors and Parameters of Freight Cars with Frame-Bogies[J]. Journal of Southwest Jiaotong University, 2003, 16(2): 127-131.
    [11]WANG Kai-yun, ZHAI Wan-ming, CAI Cheng-biao. Simulation of Lateral Dynamic Performances of Locomotives and Vehicles—Comparison of Vehicle/Track Coupling Model with Traditional Vehicle Model[J]. Journal of Southwest Jiaotong University, 2003, 16(1): 17-21.
    [12]LIUHong-you, ZENG Jing, LI Wen-xue. Dynamic Performances of Meter-Gauge Passenger Car with Forced-Steering Bogies[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 579-583.
    [13]CHI Mao-ru, WANG Kai-wen, ZHANG Wei-hua. Dynamic Performances of the Bogie with Magnetic Fluid Coupled Wheelsets[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 664-668.
    [14]WANG Ping, LIUXue-yi, LI Cheng-hui. Dynamic Analysis ofTrack Wave Propagation Supported on Continuous Elastic Foundations[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 17-22.
    [15]ZENGJing, WANG Yong. Nonlinear Dynamic Analysis for Railway Freight Cars[J]. Journal of Southwest Jiaotong University, 2000, 13(4): 399-403.
  • Cited by

    Periodical cited type(7)

    1. 王鹏,孟鑫,赵军,刘宇,杨翠萍. 基于Faster R-CNN的铁路货车心盘螺栓智能检修. 自动化与仪器仪表. 2024(05): 237-240+245 .
    2. 贾彬,王志伟,张铭涛,刘鹏飞,刘国云,张卫华. 考虑闸瓦制动的重载列车动力学建模与车辆曲线制动安全分析. 重庆理工大学学报(自然科学). 2024(06): 155-163 .
    3. 贾小平,戴焕云,朱程,魏来. 考虑柔性轮对的地铁车辆系统振动特性研究. 铁道车辆. 2024(06): 17-24+31 .
    4. 孙小娟,孙洪亮,李幸人,王宇. 多边形车轮对六轴重载货运机车动力学性能影响分析. 机械强度. 2023(03): 668-676 .
    5. 刘嘉兴,吕大立,吕可维,张琪昌,李玉龙. 基于BP神经网络的转向架斜楔参数优化. 铁道学报. 2023(10): 52-59 .
    6. 朱红霞,刘红军,张成成,王鹏,王翠艳. 不同轨道激扰下柔性轮对重载货车垂向振动特性分析. 机械设计与研究. 2022(04): 87-93 .
    7. 和风,冯洋,佟来生,舒瑶,赵春发. 高速磁浮车辆通过平面曲线时悬浮架和电磁铁的弹性变形分析. 机车电传动. 2022(04): 1-8 .

    Other cited types(15)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 42.9 %FULLTEXT: 42.9 %META: 53.6 %META: 53.6 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.6 %其他: 6.6 %其他: 0.5 %其他: 0.5 %China: 0.6 %China: 0.6 %Germany: 0.3 %Germany: 0.3 %上海: 0.5 %上海: 0.5 %东莞: 0.3 %东莞: 0.3 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %保定: 0.3 %保定: 0.3 %信阳: 0.2 %信阳: 0.2 %兰州: 0.2 %兰州: 0.2 %内江: 0.2 %内江: 0.2 %北京: 2.1 %北京: 2.1 %十堰: 0.5 %十堰: 0.5 %南京: 1.0 %南京: 1.0 %南昌: 0.2 %南昌: 0.2 %南通: 0.3 %南通: 0.3 %台州: 0.2 %台州: 0.2 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.5 %哥伦布: 0.5 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.3 %大连: 0.3 %天津: 0.6 %天津: 0.6 %安康: 0.2 %安康: 0.2 %宣城: 0.3 %宣城: 0.3 %岳阳: 0.2 %岳阳: 0.2 %常州: 0.2 %常州: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 1.3 %张家口: 1.3 %成都: 1.8 %成都: 1.8 %扬州: 0.2 %扬州: 0.2 %昆明: 0.6 %昆明: 0.6 %杭州: 0.8 %杭州: 0.8 %池州: 0.3 %池州: 0.3 %洛阳: 0.6 %洛阳: 0.6 %淄博: 0.2 %淄博: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.5 %温州: 0.5 %漯河: 1.3 %漯河: 1.3 %石家庄: 2.1 %石家庄: 2.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 26.5 %芒廷维尤: 26.5 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.2 %苏州: 0.2 %西宁: 39.7 %西宁: 39.7 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.0 %运城: 1.0 %重庆: 0.2 %重庆: 0.2 %长春: 0.3 %长春: 0.3 %长沙: 2.6 %长沙: 2.6 %青岛: 0.8 %青岛: 0.8 %马鞍山: 0.2 %马鞍山: 0.2 %其他其他ChinaGermany上海东莞临汾乌鲁木齐伊利诺伊州保定信阳兰州内江北京十堰南京南昌南通台州合肥哈尔滨哥伦布嘉兴大连天津安康宣城岳阳常州广州张家口成都扬州昆明杭州池州洛阳淄博深圳温州漯河石家庄秦皇岛芒廷维尤芝加哥苏州西宁诺沃克贵阳运城重庆长春长沙青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article views(399) PDF downloads(23) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return