Citation: | LIU Pengfei, LIU Hongjun, GAO Hao, REN Zunsong, ZHANG Kailong. Elastic Vibration of Wheelset and Its Dynamic Effect on Railway Heavy-Haul Freight Wagon[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 90-98, 234. doi: 10.3969/j.issn.0258-2724.20210024 |
To study the characteristics of wheelset elastic vibration and their effect on the dynamic performance of heavy-haul freight wagon, a railway wagon with a 30 t axle load is considered as the research object in this work. The running stability and the curving performance of vehicle are investigated in a comparative manner. First, the mathematical modeling method of elastic body based on multi-body dynamics is presented. Then, a finite element model of wheelset’s flexible body is established, and the elastic vibration modes are analyzed. The flexible wheelset is integrated in to the multi-rigid-body system, which then forms the rigid-flexible coupling dynamic model of heavy-haul wagon. Finally, for the multi-rigid body and rigid-flexible coupling modeling methods used for the wagon, the differences in wheelset vibration responses, running stability, and curving performance characteristics determined by these methods for a heavy-haul wagon were compared when using the main-line track irregularity with short-wave irregularity as the excitation source. The research results indicate that the deformation of elastic wheelset can alleviate the wheel-rail impact and also weaken the wheel-rail rigid restraining effect when compared with rigid wheelset. Therefore, the vibration amplitude for the flexible wheelset is reduced and the vehicle’s nonlinear critical speed is decreases by 9%. In sharp curves, the wheel-rail lateral force of flexible wheelset is reduced by 13.7%. The influence of wheelset’s elastic vibration on the dynamic performance of the heavy-haul wagon thus can not be ignored.
[1] |
钟硕乔. 车辆轨道耦合系统中的旋转柔性轮对建模研究[D]. 成都: 西南交通大学, 2017.
|
[2] |
PENG B, IWNICKI S, SHACKLETON P, et al. The influence of wheelset flexibility on polygonal wear of locomotive wheels[J]. Wear, 2019, 432/433: 102917.1-102917.11.
|
[3] |
BAEZA L, GINER-NAVARRO J, THOMPSON D J, et al. Eulerian models of the rotating flexible wheelset for high frequency railway dynamics[J]. Journal of Sound and Vibration, 2019, 449: 300-314. doi: 10.1016/j.jsv.2019.03.002
|
[4] |
崔潇,姚建伟,胡晓依,等. 欧拉坐标系下柔性轮对旋转效应对轮轨力的影响[J]. 中国铁道科学,2019,40(4): 120-128. doi: 10.3969/j.issn.1001-4632.2019.04.15
CUI Xiao, YAO Jianwei, HU Xiaoyi, et al. Rotation effect of flexible wheelset on wheel-rail force in Euler coordinate system[J]. China Railway Science, 2019, 40(4): 120-128. doi: 10.3969/j.issn.1001-4632.2019.04.15
|
[5] |
FOURIE D, FRÖHLING R, HEYNS S. Railhead corrugation resulting from mode-coupling instability in the presence of veering modes[J]. Tribology International, 2020, 152: 106499. doi: 10.1016/j.triboint.2020.106499
|
[6] |
CRUCEANU I C, SOROHAN Ș. Determination of the harmonic response of a railway wheelset using the finite element analysis method[J]. Procedia Manufacturing, 2020, 46: 173-179. doi: 10.1016/j.promfg.2020.03.026
|
[7] |
李国芳,岳鹏,丁旺才,等. 轮对柔性对车辆动态曲线通过性能的影响研究[J]. 铁道标准设计,2019,63(9): 173-179.
LI Guofang, YUE Peng, DING Wangcai, et al. Research on the influence of flexibility wheelset on vehicle dynamic curve passing performance[J]. Railway Standard Design, 2019, 63(9): 173-179.
|
[8] |
张波,罗光兵,蒋忠城,等. 柔性结构对车辆运动稳定性的影响[J]. 技术与市场,2019,26(6): 5-8.
ZHANG Bo, LUO Guangbing, JIANG Zhongcheng, et al. The influence of flexible structure on vehicle dynamic stability[J]. Technology and Market, 2019, 26(6): 5-8.
|
[9] |
杨云帆,周青,巩磊,等. 轮对柔性对直线电机车辆动态响应的影响分析[J]. 西南交通大学学报,2020,55(6): 1313-1319. doi: 10.3969/j.issn.0258-2724.20180866
YANG Yunfan, ZHOU Qing, GONG Lei, et al. Influence of wheelset flexibility on dynamic response of linear induction motor vehicles[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1313-1319. doi: 10.3969/j.issn.0258-2724.20180866
|
[10] |
金学松,吴越,梁树林,等. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报,2018,53(1): 1-14. doi: 10.3969/j.issn.0258-2724.2018.01.001
JIN Xuesong, WU Yue, LIANG Shulin, et al. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14. doi: 10.3969/j.issn.0258-2724.2018.01.001
|
[11] |
杨润芝,曾京. 高阶车轮多边形对轮轨系统振动影响分析[J]. 振动与冲击,2020,39(21): 101-110.
YANG Runzhi, ZENG Jing. Influences of higher order wheel polygon on vibration of wheel-rail system[J]. Journal of Vibration and Shock, 2020, 39(21): 101-110.
|
[12] |
王相平,王红兵,贾文慧,等. 车轮扁疤对高速车辆动态曲线通过性能的影响[J]. 铁道科学与工程学报,2020,17(9): 2198-2207.
WANG Xiangping, WANG Hongbing, JIA Wenhui, et al. The influence of wheel flat on the performance of high-speed vehicle dynamic on railway curve negotiation[J]. Journal of Railway Science and Engineering, 2020, 17(9): 2198-2207.
|
[13] |
刘国云,曾京,邬平波,等. 车轮扁疤所引起的车辆系统振动特性分析[J]. 机械工程学报,2020,56(8): 182-189. doi: 10.3901/JME.2020.08.182
LIU Guoyun, ZENG Jing, WU Pingbo, et al. Vibration characteristic analysis of vehicle systems due to wheel flat[J]. Journal of Mechanical Engineering, 2020, 56(8): 182-189. doi: 10.3901/JME.2020.08.182
|
[14] |
杨广雪,赵方伟,李秋泽,等. 高速列车轮轨接触几何参数对轮轨磨耗的影响研究[J]. 铁道学报,2019,41(2): 50-56.
YANG Guangxue, ZHAO Fangwei, LI Qiuze, et al. Study of influences of high-speed train wheel-rail contact geometric parameters on wheel-rail wear[J]. Journal of the China Railway Society, 2019, 41(2): 50-56.
|
[15] |
魏世明. 30 t轴重货车HFZ915铸钢车轮的研发[J]. 电力机车与城轨车辆,2016,39(1): 58-60.
WEI Shiming. Research and development of HFZ915 cast steel wheel for 30 t axle-load freight car[J]. Electric Locomotives & Mass Transit Vehicles, 2016, 39(1): 58-60.
|
[16] |
吴毅,刘鑫贵,项彬,等. 重载铁路货车用LZ45CrV车轴钢综合性能的试验研究[J]. 中国铁道科学,2015,36(2): 68-72. doi: 10.3969/j.issn.1001-4632.2015.02.10
WU Yi, LIU Xingui, XIANG Bin, et al. Experimental study on the comprehensive performance of LZ45CrV axle steel for heavy haul freight car[J]. China Railway Science, 2015, 36(2): 68-72. doi: 10.3969/j.issn.1001-4632.2015.02.10
|
[17] |
国家铁路局. 铁道车辆轮对及轴承型式与基本尺寸: TB/T 1010—2016 [S]. 北京: 中国铁道出版社, 2016.
|
[18] |
翟婉明. 车辆-轨道耦合动力学[M]. 4版. 北京: 科学出版社, 2015.
|
[19] |
刘鹏飞,王开云,翟婉明. 长大列车通过弹性曲线轨道仿真求解方法研究[J]. 西南交通大学学报,2018,53(1): 31-37. doi: 10.3969/j.issn.0258-2724.2018.01.004
LIU Pengfei, WANG Kaiyun, ZHAI Wanming. Simulation solution method for long and heavy-haul trains negotiating elastic curved tracks[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 31-37. doi: 10.3969/j.issn.0258-2724.2018.01.004
|
[20] |
李亨利,李芾,傅茂海,等. 斜楔摩擦减振器建模及动力学分析[J]. 铁道科学与工程学报,2015,12(5): 1191-1199. doi: 10.3969/j.issn.1672-7029.2015.05.031
LI Hengli, LI Fu, FU Maohai, et al. Dynamic modeling and simulation of wedges friction damper[J]. Journal of Railway Science and Engineering, 2015, 12(5): 1191-1199. doi: 10.3969/j.issn.1672-7029.2015.05.031
|
[21] |
王勇,曾京,张卫华. 铁道货车非线性稳定性[J]. 交通运输工程学报,2002,2(2): 36-40. doi: 10.3321/j.issn:1671-1637.2002.02.009
WANG Yong, ZENG Jing, ZHANG Weihua. Nonlinear stability of railway freight cars[J]. Journal of Traffic and Transportation Engineering, 2002, 2(2): 36-40. doi: 10.3321/j.issn:1671-1637.2002.02.009
|
[22] |
国家铁路局. 铁路线路设计规范: TB 10098—2017[S].北京: 中国铁道出版社, 2017.
|