• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
CHEN Minwu, FU Haochun, XIE Chonghao, LIU Weidong, XU Wei. Analysis of Rail Potential Characteristics of AC/DC Dual-system Traction Power Supply System[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 729-736. doi: 10.3969/j.issn.0258-2724.20200597
Citation: CHEN Minwu, FU Haochun, XIE Chonghao, LIU Weidong, XU Wei. Analysis of Rail Potential Characteristics of AC/DC Dual-system Traction Power Supply System[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 729-736. doi: 10.3969/j.issn.0258-2724.20200597

Analysis of Rail Potential Characteristics of AC/DC Dual-system Traction Power Supply System

doi: 10.3969/j.issn.0258-2724.20200597
  • Received Date: 04 Sep 2020
  • Rev Recd Date: 13 Jan 2021
  • Publish Date: 15 Apr 2021
  • In the AC/DC dual-system traction power supply system, the locomotive works in different power supply modes before and after phase breaking, which results in differences in traction return current characteristics and affects the combined rail potential distribution of different sections. A model for AC/DC dual-system traction power supply system is established by using CDEGS software, and the correctness and validity of the calculation model is verified. Given the mutual interference in traction return current between the AC and DC sections, the combined rail potential limit of the AC/DC dual-system traction power supply system is proposed, and the main factors affecting the combined rail potential distribution and its sensitivity are explored. Results show that when the rail insulation joints are not installed in the power free zone, the increase in the length of the power free zone can reduce the mutual interference in the traction return current between the AC and DC sections, leading to the reduction of the combined rail potential in the power free zone. The increase in soil resistivity can aggravate the mutual interference of traction return currents between the AC and DC sections, resulting in increase in the combined rail potential in the power free zone. The greater the rail-to-ground resistance of the DC section, the higher the combined rail potential for the DC section. The insulating joints in the power free zone between the AC and DC sections can change the reflow structure and avoid the out of limits of the combined rail potential. The first dual-system line in China is taken as an example, showing that the DC component of the combined rail potential can be reduced from 103.92 V to 60.20 V when the insulation joints are installed, which can ensure personal safety.

     

  • [1]
    杨耀. 国外大城市轨道交通市域线的发展及其启示[J]. 城市轨道交通研究,2008,11(2): 17-21. doi: 10.3969/j.issn.1007-869X.2008.02.006

    YANG Yao. Development of suburban rail transit in foreign metropolis[J]. Urban Mass Transit, 2008, 11(2): 17-21. doi: 10.3969/j.issn.1007-869X.2008.02.006
    [2]
    周海涛. 双制式受流方式在城轨车辆上的应用[J]. 电力机车与城轨车辆,2004,27(1): 46-48. doi: 10.3969/j.issn.1672-1187.2004.01.016

    ZHOU Haitao. Application of dual-current-collection mode on urban masstrans it vehicles[J]. Electric Locomotives & Mass Transit Vehicles, 2004, 27(1): 46-48. doi: 10.3969/j.issn.1672-1187.2004.01.016
    [3]
    OGUNSOLA A, MARISCOTTI A, SANDROLINI L. Estimation of stray current from a DC-electrified railway and impressed potential on a buried pipe[J]. IEEE Transactions on Power Delivery, 2012, 27(4): 2238-2246. doi: 10.1109/TPWRD.2012.2211623
    [4]
    TZENG Y S, LEE C H. Analysis of rail potential and stray currents in a direct-current transit system[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1516-1525. doi: 10.1109/TPWRD.2010.2040631
    [5]
    闫明富,李夏青,王奎鹃. 地铁钢轨电位和杂散电流分布研究及仿真[J]. 北京石油化工学院学报,2013,21(1): 37-41. doi: 10.3969/j.issn.1008-2565.2013.01.010

    YAN Mingfu, LI Xiaqing, WANG Kuijuan. Research and simulation of metro rail potential and stray current distribution[J]. Journal of Beijing Institute of Petro-Chemical Technology, 2013, 21(1): 37-41. doi: 10.3969/j.issn.1008-2565.2013.01.010
    [6]
    陈民武,赵鑫,丁大鹏,等. 城市轨道交通供电系统钢轨电位限制装置操作过电压研究[J]. 中国铁道科学,2017,38(6): 94-99. doi: 10.3969/j.issn.1001-4632.2017.06.13

    CHEN Minwu, ZHAO Xin, DING Dapeng, et al. Research on switching surge of rail over-voltage protection device in power supply system for urban rail transit[J]. China Railway Science, 2017, 38(6): 94-99. doi: 10.3969/j.issn.1001-4632.2017.06.13
    [7]
    曹晓斌,何方方. 铁路站场牵引回流系统的回流特性研究[J]. 铁道学报,2017,39(12): 43-49. doi: 10.3969/j.issn.1001-8360.2017.12.007

    CAO Xiaobin, HE Fangfang. Research on return current characteristics of traction return current system in station yard[J]. Journal of the China Railway Society, 2017, 39(12): 43-49. doi: 10.3969/j.issn.1001-8360.2017.12.007
    [8]
    张民,何正友,方雷,等. 自耦变压器供电方式下降低高速铁路钢轨电位的方法及其仿真分析[J]. 电网技术,2011,35(3): 80-84.

    ZHANG Min, HE Zhengyou, FANG Lei, et al. Methods to reduce rail potential of high-speed railway adopting autotransformer feeding system and simulation analysis on them[J]. Power System Technology, 2011, 35(3): 80-84.
    [9]
    XIE S F. Study on methods to reducing rail potential of high-speed railway[C]//32nd Annual Conference on IEEE Industrial Electronics. Paris: IEEE, 2006: 1042-1046.
    [10]
    蔡力,王建国,樊亚东,等. 地铁走行轨对地过渡电阻杂散电流分布的影响[J]. 高电压技术,2015,41(11): 3604-3610.

    CAI Li, WANG Jianguo, FAN Yadong, et al. Influence of the track-to-earth resistance of subway on stray current distribution[J]. High Voltage Engineering, 2015, 41(11): 3604-3610.
    [11]
    朱峰,李嘉成,李朋真,等. 电气化铁路钢轨交流内阻抗计算[J]. 铁道学报,2017,39(12): 38-42. doi: 10.3969/j.issn.1001-8360.2017.12.006

    ZHU Feng, LI Jiacheng, LI Pengzhen, et al. Calculation of alternating-current impedance for the rail of electric railway[J]. Journal of the China Railway Society, 2017, 39(12): 38-42. doi: 10.3969/j.issn.1001-8360.2017.12.006
    [12]
    朱峰,李嘉成,曾海波,等. 城市轨道交通轨地过渡电阻对杂散电流分布特性的影响[J]. 高电压技术,2018,44(8): 2738-2745.

    ZHU Feng, LI Jiacheng, ZENG Haibo, et al. Influence of rail-to-ground resistance of urban transit systems on distribution characteristics of stray current[J]. High Voltage Engineering, 2018, 44(8): 2738-2745.
    [13]
    ZABOLI A, VAHIDI B, YOUSEFI S, et al. Evaluation and control of stray current in DC-electrified railway systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 974-980. doi: 10.1109/TVT.2016.2555485
    [14]
    邓明丽. 高速及重载铁路牵引回流钢轨电位规律的研究[D]. 成都: 西南交通大学, 2009.
    [15]
    李群湛, 贺建闽. 牵引供电系统分析[M]. 成都: 西南交通大学出版社, 2007.
    [16]
    IX-IEC. Railway applications-fixed installations-electrical safety, earthing and the return circuit-part 3: Mutual interaction of A. C. and D. C. traction systems: IEC 62128-3—2013[S]. Geneva: IEC, 2013
    [17]
    国家市场监督管理总局, 国家标准化管理委员会. 轨道交通 地面装置 电气安全、接地和回流 第1部分: 电击防护措施: GB/T 28026.1—2018[S]. 北京: 中国标准出版社, 2018.
    [18]
    中华人民共和国住房和城乡建设部. 城市轨道交通技术规范: GB 50490—2009[S]. 北京: 中国建筑工业出版社, 2009.
    [19]
    中华人民共和国建设部. 地铁杂散电流腐蚀防护技术规程: CJJ 49—1992[S]. 北京: 中国建筑工业出版社, 1993.
    [20]
    解绍锋, 汪吉健, 魏宏伟, 等. 高速铁路钢轨电位计算及限制方案研究[C]//中国铁道学会电气化委员会2006年学术会议论文集. 西安: 中国铁道学会电气化委员会, 2006: 324-328.
  • Relative Articles

    [1]GUO Wenkai, WANG Guo, MIN Yongzhi. Hybrid Energy Storage Capacity Configuration for Traction Power Supply Systems Considering Ladder-Type Carbon Trading Mechanism[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230693
    [2]CHEN Weirong, WANG Xiaoyu, HAN Ying, ZANG Zhi, LI Qi, SHEN Wenjie, XU Chengpeng. Coordinated Control Method of Photovoltaic and Battery System Connected to Traction Power Supply System Based on Railway Power Conditioner[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 1-10. doi: 10.3969/j.issn.0258-2724.20211058
    [3]LIU Wei, YANG Lingyun, MA Qingan, LI Xuefei, BHATTI Ashfaque Ahmed. Vehicle-Ground United Traction Power Supply Calculation in Dual-System Train Grounding System[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 501-509. doi: 10.3969/j.issn.0258-2724.20220655
    [4]LIU Yuanli, LI Qunzhan. Day-Ahead Optimal Scheduling of Co-phase Traction Power Supply System with Photovoltaic and Hybrid Energy Storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 30-39. doi: 10.3969/j.issn.0258-2724.20200534
    [5]LIU Wei, ZENG Jiaxin, MA Qingan, ZHANG Jian, XIONG Peng, QI He. Calculation of Collaborative Power Flow for Urban Rail Traction Power Supply System with Bidirectional Converter Device[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1145-1153. doi: 10.3969/j.issn.0258-2724.20220494
    [6]LIU Wei, ZHANG Hao, ZHANG Jian, LI You, PAN Weiguo, LI Qunzhan. Optimal Siting and Sizing forInverter Feedback Devices Applied in Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1355-1362. doi: 10.3969/j.issn.0258-2724.20200402
    [7]LIU Wei, ZHANG Yangxin, ZHANG Jian, LI Kunpeng, LI Qunzhan. Calculation of Urban Rail AC/DC Power Supply with Traction Substation in Multi-Operation Modes[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1163-1170. doi: 10.3969/j.issn.0258-2724.20190854
    [8]HE Zhengyou, FENG Ding, LIN Sheng, SUN Xiaojun. Research on Security Risk Assessment for Traction Power Supply System of High-speed Railway[J]. Journal of Southwest Jiaotong University, 2016, 29(3): 418-429. doi: 10.3969/j.issn.0258-2724.2016.03.002
    [9]WANG Qi, HE Zhengyou, LIN Sheng, FENG Ding, LI Zhaoyang. PHM and Active Maintenance for High-Speed Railway Traction Power Supply System[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 942-952. doi: 10.3969/j.issn.0258-2724.2015.05.026
    [10]LI Qunzhan. Industrial Frequency Single-Phase AC Traction Power Supply System and Its Key Technologies for Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 199-207. doi: 10.3969/j.issn.0258-2724.2015.02.001
    [11]LI Qunzhan. On New Generation Traction Power Supply System and Its Key Technologies for Electrification Railway[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 559-568. doi: 10.3969/j.issn.0258-2724.2014.04.001
    [12]DONG An-Beng-, Zhang-Xue-Yuan-, Deng-Meng-Li-, Chen-Ji-Gang-, Tun-An-Ning. Impact of Integrated GroundingW ire on Traction Return Current in Direct Power Supply System[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 88-94. doi: 10. 3969/.j issn. 0258-2724. 2
    [13]ZHANG Xiufeng, LÜ, Xiaoqin, LIAN Jisan. Optimal Compensation Models in Cophase Power Supply System[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 841-847.
    [14]Zheng Yongping, Qian Qingquan. Database Design for Railway Traction Power Supply Supervisory System[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 425-430.
    [15]ZHENG Yong-Beng, Jian-Qing-Quan. Database Design for Railway Traction Power Supply Supervisory System[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 425-430.
    [16]Liu Mingguang, Kong Zhongqiu, Gao Shiqin. On-Line Monitoring of Early Insulating Faults in Traction Transformer[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 446-451.
    [17]LIU Meng-Guang, KONG Zhong-Qiu, Gao-Shi-Qi. On-Line Monitoring of Early Insulating Faults in Traction Transformer[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 446-451.
  • Cited by

    Periodical cited type(7)

    1. 徐裕强,解绍锋,钟帆,王辉,李鲲鹏. 基于静止无功发生器的双流制牵引供电系统控制策略. 电网技术. 2024(02): 858-871 .
    2. 刘炜,杨凌云,马庆安,李雪飞,BHATTI Ashfaque Ahmed. 双制式列车接地系统的车-地联合牵引供电计算. 西南交通大学学报. 2024(03): 501-509 . 本站查看
    3. 王克文,李卫兰,王辉. 双边供电下的钢轨电位影响因素及抑制措施分析. 铁道科学与工程学报. 2024(06): 2465-2475 .
    4. 邢江,赵金玉. 轨道交通车辆段双流制牵引供电系统在交直流切换供电方式下的电磁场分析. 城市轨道交通研究. 2024(08): 67-73 .
    5. 李雪飞,孙文斌,李明泽,马庆安,代骏. 双制式列车断路器合闸浪涌过电压研究. 电气技术. 2023(09): 28-33 .
    6. 王强. 冻土区电气化铁路接触网基础接地研究. 铁道工程学报. 2023(12): 72-77 .
    7. 何昌艳,王建娜. 交直流双流制轨道交通钢轨电位特性研究. 电工技术. 2022(22): 166-169 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 37.5 %FULLTEXT: 37.5 %META: 58.7 %META: 58.7 %PDF: 3.8 %PDF: 3.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.7 %其他: 5.7 %其他: 0.1 %其他: 0.1 %[]: 0.1 %[]: 0.1 %临汾: 0.3 %临汾: 0.3 %内江: 0.1 %内江: 0.1 %北京: 4.1 %北京: 4.1 %十堰: 0.3 %十堰: 0.3 %南京: 0.4 %南京: 0.4 %南充: 0.1 %南充: 0.1 %合肥: 0.1 %合肥: 0.1 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 1.0 %天津: 1.0 %太原: 0.1 %太原: 0.1 %宣城: 0.1 %宣城: 0.1 %常德: 0.1 %常德: 0.1 %张家口: 2.8 %张家口: 2.8 %意法半: 0.3 %意法半: 0.3 %成都: 2.2 %成都: 2.2 %扬州: 0.3 %扬州: 0.3 %揭阳: 0.1 %揭阳: 0.1 %昆明: 0.6 %昆明: 0.6 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.6 %杭州: 0.6 %株洲: 0.1 %株洲: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.9 %武汉: 0.9 %池州: 1.2 %池州: 1.2 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.6 %济南: 0.6 %温州: 0.6 %温州: 0.6 %漯河: 0.9 %漯河: 0.9 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %石家庄: 2.9 %石家庄: 2.9 %福州: 0.4 %福州: 0.4 %芒廷维尤: 29.0 %芒廷维尤: 29.0 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.3 %苏州: 0.3 %西宁: 36.1 %西宁: 36.1 %西安: 0.3 %西安: 0.3 %诺沃克: 1.6 %诺沃克: 1.6 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.0 %运城: 1.0 %邵阳: 0.3 %邵阳: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %长沙: 0.9 %长沙: 0.9 %青岛: 0.6 %青岛: 0.6 %其他其他[]临汾内江北京十堰南京南充合肥哥伦布嘉兴天津太原宣城常德张家口意法半成都扬州揭阳昆明朝阳杭州株洲格兰特县武汉池州沈阳洛阳济南温州漯河烟台焦作石家庄福州芒廷维尤芝加哥苏州西宁西安诺沃克贵阳运城邵阳郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views(404) PDF downloads(26) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return