Citation: | CHEN Minwu, FU Haochun, XIE Chonghao, LIU Weidong, XU Wei. Analysis of Rail Potential Characteristics of AC/DC Dual-system Traction Power Supply System[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 729-736. doi: 10.3969/j.issn.0258-2724.20200597 |
In the AC/DC dual-system traction power supply system, the locomotive works in different power supply modes before and after phase breaking, which results in differences in traction return current characteristics and affects the combined rail potential distribution of different sections. A model for AC/DC dual-system traction power supply system is established by using CDEGS software, and the correctness and validity of the calculation model is verified. Given the mutual interference in traction return current between the AC and DC sections, the combined rail potential limit of the AC/DC dual-system traction power supply system is proposed, and the main factors affecting the combined rail potential distribution and its sensitivity are explored. Results show that when the rail insulation joints are not installed in the power free zone, the increase in the length of the power free zone can reduce the mutual interference in the traction return current between the AC and DC sections, leading to the reduction of the combined rail potential in the power free zone. The increase in soil resistivity can aggravate the mutual interference of traction return currents between the AC and DC sections, resulting in increase in the combined rail potential in the power free zone. The greater the rail-to-ground resistance of the DC section, the higher the combined rail potential for the DC section. The insulating joints in the power free zone between the AC and DC sections can change the reflow structure and avoid the out of limits of the combined rail potential. The first dual-system line in China is taken as an example, showing that the DC component of the combined rail potential can be reduced from 103.92 V to 60.20 V when the insulation joints are installed, which can ensure personal safety.
[1] |
杨耀. 国外大城市轨道交通市域线的发展及其启示[J]. 城市轨道交通研究,2008,11(2): 17-21. doi: 10.3969/j.issn.1007-869X.2008.02.006
YANG Yao. Development of suburban rail transit in foreign metropolis[J]. Urban Mass Transit, 2008, 11(2): 17-21. doi: 10.3969/j.issn.1007-869X.2008.02.006
|
[2] |
周海涛. 双制式受流方式在城轨车辆上的应用[J]. 电力机车与城轨车辆,2004,27(1): 46-48. doi: 10.3969/j.issn.1672-1187.2004.01.016
ZHOU Haitao. Application of dual-current-collection mode on urban masstrans it vehicles[J]. Electric Locomotives & Mass Transit Vehicles, 2004, 27(1): 46-48. doi: 10.3969/j.issn.1672-1187.2004.01.016
|
[3] |
OGUNSOLA A, MARISCOTTI A, SANDROLINI L. Estimation of stray current from a DC-electrified railway and impressed potential on a buried pipe[J]. IEEE Transactions on Power Delivery, 2012, 27(4): 2238-2246. doi: 10.1109/TPWRD.2012.2211623
|
[4] |
TZENG Y S, LEE C H. Analysis of rail potential and stray currents in a direct-current transit system[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1516-1525. doi: 10.1109/TPWRD.2010.2040631
|
[5] |
闫明富,李夏青,王奎鹃. 地铁钢轨电位和杂散电流分布研究及仿真[J]. 北京石油化工学院学报,2013,21(1): 37-41. doi: 10.3969/j.issn.1008-2565.2013.01.010
YAN Mingfu, LI Xiaqing, WANG Kuijuan. Research and simulation of metro rail potential and stray current distribution[J]. Journal of Beijing Institute of Petro-Chemical Technology, 2013, 21(1): 37-41. doi: 10.3969/j.issn.1008-2565.2013.01.010
|
[6] |
陈民武,赵鑫,丁大鹏,等. 城市轨道交通供电系统钢轨电位限制装置操作过电压研究[J]. 中国铁道科学,2017,38(6): 94-99. doi: 10.3969/j.issn.1001-4632.2017.06.13
CHEN Minwu, ZHAO Xin, DING Dapeng, et al. Research on switching surge of rail over-voltage protection device in power supply system for urban rail transit[J]. China Railway Science, 2017, 38(6): 94-99. doi: 10.3969/j.issn.1001-4632.2017.06.13
|
[7] |
曹晓斌,何方方. 铁路站场牵引回流系统的回流特性研究[J]. 铁道学报,2017,39(12): 43-49. doi: 10.3969/j.issn.1001-8360.2017.12.007
CAO Xiaobin, HE Fangfang. Research on return current characteristics of traction return current system in station yard[J]. Journal of the China Railway Society, 2017, 39(12): 43-49. doi: 10.3969/j.issn.1001-8360.2017.12.007
|
[8] |
张民,何正友,方雷,等. 自耦变压器供电方式下降低高速铁路钢轨电位的方法及其仿真分析[J]. 电网技术,2011,35(3): 80-84.
ZHANG Min, HE Zhengyou, FANG Lei, et al. Methods to reduce rail potential of high-speed railway adopting autotransformer feeding system and simulation analysis on them[J]. Power System Technology, 2011, 35(3): 80-84.
|
[9] |
XIE S F. Study on methods to reducing rail potential of high-speed railway[C]//32nd Annual Conference on IEEE Industrial Electronics. Paris: IEEE, 2006: 1042-1046.
|
[10] |
蔡力,王建国,樊亚东,等. 地铁走行轨对地过渡电阻杂散电流分布的影响[J]. 高电压技术,2015,41(11): 3604-3610.
CAI Li, WANG Jianguo, FAN Yadong, et al. Influence of the track-to-earth resistance of subway on stray current distribution[J]. High Voltage Engineering, 2015, 41(11): 3604-3610.
|
[11] |
朱峰,李嘉成,李朋真,等. 电气化铁路钢轨交流内阻抗计算[J]. 铁道学报,2017,39(12): 38-42. doi: 10.3969/j.issn.1001-8360.2017.12.006
ZHU Feng, LI Jiacheng, LI Pengzhen, et al. Calculation of alternating-current impedance for the rail of electric railway[J]. Journal of the China Railway Society, 2017, 39(12): 38-42. doi: 10.3969/j.issn.1001-8360.2017.12.006
|
[12] |
朱峰,李嘉成,曾海波,等. 城市轨道交通轨地过渡电阻对杂散电流分布特性的影响[J]. 高电压技术,2018,44(8): 2738-2745.
ZHU Feng, LI Jiacheng, ZENG Haibo, et al. Influence of rail-to-ground resistance of urban transit systems on distribution characteristics of stray current[J]. High Voltage Engineering, 2018, 44(8): 2738-2745.
|
[13] |
ZABOLI A, VAHIDI B, YOUSEFI S, et al. Evaluation and control of stray current in DC-electrified railway systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 974-980. doi: 10.1109/TVT.2016.2555485
|
[14] |
邓明丽. 高速及重载铁路牵引回流钢轨电位规律的研究[D]. 成都: 西南交通大学, 2009.
|
[15] |
李群湛, 贺建闽. 牵引供电系统分析[M]. 成都: 西南交通大学出版社, 2007.
|
[16] |
IX-IEC. Railway applications-fixed installations-electrical safety, earthing and the return circuit-part 3: Mutual interaction of A. C. and D. C. traction systems: IEC 62128-3—2013[S]. Geneva: IEC, 2013
|
[17] |
国家市场监督管理总局, 国家标准化管理委员会. 轨道交通 地面装置 电气安全、接地和回流 第1部分: 电击防护措施: GB/T 28026.1—2018[S]. 北京: 中国标准出版社, 2018.
|
[18] |
中华人民共和国住房和城乡建设部. 城市轨道交通技术规范: GB 50490—2009[S]. 北京: 中国建筑工业出版社, 2009.
|
[19] |
中华人民共和国建设部. 地铁杂散电流腐蚀防护技术规程: CJJ 49—1992[S]. 北京: 中国建筑工业出版社, 1993.
|
[20] |
解绍锋, 汪吉健, 魏宏伟, 等. 高速铁路钢轨电位计算及限制方案研究[C]//中国铁道学会电气化委员会2006年学术会议论文集. 西安: 中国铁道学会电气化委员会, 2006: 324-328.
|