• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
LIU Wei, YANG Lingyun, MA Qingan, LI Xuefei, BHATTI Ashfaque Ahmed. Vehicle-Ground United Traction Power Supply Calculation in Dual-System Train Grounding System[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 501-509. doi: 10.3969/j.issn.0258-2724.20220655
Citation: LIU Wei, YANG Lingyun, MA Qingan, LI Xuefei, BHATTI Ashfaque Ahmed. Vehicle-Ground United Traction Power Supply Calculation in Dual-System Train Grounding System[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 501-509. doi: 10.3969/j.issn.0258-2724.20220655

Vehicle-Ground United Traction Power Supply Calculation in Dual-System Train Grounding System

doi: 10.3969/j.issn.0258-2724.20220655
  • Received Date: 22 Sep 2022
  • Rev Recd Date: 29 Dec 2022
  • Available Online: 20 Apr 2024
  • Publish Date: 12 Jan 2023
  • In order to study the distribution of current circulation and potential of the train’s body–axle end of the dual-system train in different power supply system sections, the chain circuit model of the train grounding system was established based on a dual-system train, and a united traction power supply calculation method was proposed for the vehicle-ground integration in alternating current (AC) and direct current (DC) sections. At the same time, the optimization model of train grounding protection resistance was established, and two configuration schemes of the train grounding system were analyzed. A dual-system rail transit line in China was studied for simulation verification. The research results show that compared with scheme 2, scheme 1 can reduce the maximum potential value of the train’s body–axle end by 36.58%–41.04% and the maximum current circulation value by 18.49%–22.97%. In addition, scheme 1 sets the protection resistance at the first and last vehicles at 20 mΩ, which can achieve a maximum potential value of the train’s body–axle end of 1.15 V and a maximum current circulation value of 50.30 A. It can reach the optimal effect of restraining the potential of the train’s body–axle end. The united traction power supply calculation method for the vehicle-ground integration in AC and DC sections can be applied to grounding system analysis of power supply single-system or multiple-system trains.

     

  • loading
  • [1]
    周福林,王文昊,张伟,等. 地铁列车轴箱轴承电流测试与接地方式优化[J]. 中国铁道科学,2021,42(3): 136-143. doi: 10.3969/j.issn.1001-4632.2021.03.16

    ZHOU Fulin, WANG Wenhao, ZHANG Wei, et al. Current test and grounding mode optimization of axle box bearing for metro train[J]. China Railway Science, 2021, 42(3): 136-143. doi: 10.3969/j.issn.1001-4632.2021.03.16
    [2]
    陈志文. 地铁车辆接地回流方案对比研究[D]. 北京:北京交通大学,2021.
    [3]
    魏晓斌,魏文赋,桂志远,等. 基于AT供电方式下380B型高速动车组保护接地电流分布研究[J]. 铁道学报,2019,41(5): 64-70. doi: 10.3969/j.issn.1001-8360.2019.05.008

    WEI Xiaobin, WEI Wenfu, GUI Zhiyuan, et al. Research of protective grounding current distribution of 380B EMU based on AT power supply mode[J]. Journal of the China Railway Society, 2019, 41(5): 64-70. doi: 10.3969/j.issn.1001-8360.2019.05.008
    [4]
    高国强,郑玥,曹保江,等. 动车组过吸上线时保护接地电流分布特性[J]. 铁道学报,2018,40(8): 60-67. doi: 10.3969/j.issn.1001-8360.2018.08.008

    GAO Guoqiang, ZHENG Yue, CAO Baojiang, et al. Distribution characteristics of protective earthing current when high-speed EMU passes through boosting cable[J]. Journal of the China Railway Society, 2018, 40(8): 60-67. doi: 10.3969/j.issn.1001-8360.2018.08.008
    [5]
    魏晓斌,高国强,陈盼,等. 保护接地对高速动车组接地回流的影响[J]. 铁道学报,2017,39(8): 39-44. doi: 10.3969/j.issn.1001-8360.2017.08.006

    WEI Xiaobin, GAO Guoqiang, CHEN Pan, et al. Influence of protective grounding on high-speed EMU grounding reflux[J]. Journal of the China Railway Society, 2017, 39(8): 39-44. doi: 10.3969/j.issn.1001-8360.2017.08.006
    [6]
    国家市场监督管理总局. 轨道交通 · 地面装置 · 电气安全、接地和回流 · 第3部分:交流和直流牵引供电系统的相互作用: GB/T 28026.3—2018[S] 北京: 中国标准出版社,2018.
    [7]
    陈民武,付浩纯,谢崇豪,等. 交直流双制式牵引供电系统钢轨电位特性分析[J]. 西南交通大学学报,2022,57(4): 729-736. doi: 10.3969/j.issn.0258-2724.20200597

    CHEN Minwu, FU Haochun, XIE Chonghao, et al. Analysis of rail potential characteristics of AC/DC dual-system traction power supply system[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 729-736. doi: 10.3969/j.issn.0258-2724.20200597
    [8]
    GARZON J, LOIERO R, JORRETO F. Mixed AC/DC electrified railway lines: a study of grounding[J]. IEEE Vehicular Technology Magazine, 2020, 15(1): 91-98. doi: 10.1109/MVT.2019.2960698
    [9]
    SZELĄG A, PATOKA M. Some aspects of impact analysis of a planned new 25kV AC railway lines system on the existing 3 kV DC railway system in a traction supply transition zone[C]//2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion. Ischia: IEEE, 2014: 796-800.
    [10]
    SANE S, SHARMA S, PRASAD S K. Harmonic analysis for AC and DC supply in Traction substation of Mumbai[C]//2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). Coimbatore: IEEE, 2015: 1-5.
    [11]
    刘卫东,胥伟,刘飞,等. 交直流双制式列车过分相暂态过程仿真研究[J]. 城市轨道交通研究,2022,25(7): 85-89.

    LIU Weidong, XU Wei, LIU Fei, et al. Research on transient process of AC/DC dual-system locomotive passing electric phase separation by simulation[J]. Urban Mass Transit, 2022, 25(7): 85-89.
    [12]
    STEIMEL A. Under Europe’s incompatible catenary voltages a review of multi-system traction technology[C]//2012 Electrical Systems for Aircraft, Railway and Ship Propulsion. Bologna: IEEE, 2012: 1-8.
    [13]
    彭继权,冯伯欣. 双流制山地城市As型地铁车辆接地系统研究[J]. 现代城市轨道交通,2019(12): 1-5.

    PENG Jiquan, FENG Boxin. Research on the grounding system of double current As type metro vehicles in mountainous cities[J]. Modern Urban Transit, 2019(12): 1-5.
    [14]
    吴命利. 电气化铁道牵引网的统一链式电路模型[J]. 中国电机工程学报,2010,30(28): 52-58.

    WU Mingli. Uniform chain circuit model for traction networks of electric railways[J]. Proceedings of the CSEE, 2010, 30(28): 52-58.
    [15]
    刘瑞龙. 市域铁路交流牵引供电仿真研究[D]. 成都:西南交通大学,2018.
    [16]
    孙磊,吴命利,孙继星,等. 基于整流机组外特性的地铁车辆短路电流计算[J]. 机车电传动,2019(5): 105-110,128.

    SUN Lei, WU Mingli, SUN Jixing, et al. Calculation of short-circuit current of metro vehicle based on external characteristics of rectifier unit[J]. Electric Drive for Locomotives, 2019(5): 105-110,128.
    [17]
    李群湛,贺建闽. 牵引供电系统分析[M]. 成都: 西南交通大学出版社,2007.
    [18]
    刘炜,李富强,唐靖坤,等. 城市轨道走行轨过渡电阻测量方法与计算误差[J]. 高电压技术,2020,46(8): 2856-2863.

    LIU Wei, LI Fuqiang, TANG Jingkun, et al. Measurement method and calculation error of rail-to-earth resistance in urban rail[J]. High Voltage Engineering, 2020, 46(8): 2856-2863.
    [19]
    黄祥. 动车组车体环流分析与抑制方法研究[D]. 成都: 西南交通大学,2016.
    [20]
    中华人民共和国铁道部. 铁道车辆金属部件的接地保护:TB/T 2977—2016[S]. 北京: 中国铁道出版社,2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article views(202) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return