Citation: | LIU Wei, ZENG Jiaxin, MA Qingan, ZHANG Jian, XIONG Peng, QI He. Calculation of Collaborative Power Flow for Urban Rail Traction Power Supply System with Bidirectional Converter Device[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1145-1153. doi: 10.3969/j.issn.0258-2724.20220494 |
The bidirectional converter device can effectively inhibit the fluctuation of the DC-side grid voltage at traction substation, reduce the current transmitted between regions, and limit the rail potential. As the collaborative control strategy of the bidirectional converter and rectifier unit will directly affect the power flow of urban rail traction power supply system, a coordinated power supply scheme composed of a bidirectional converter device and a 24-pulse rectifier is proposed, and the comprehensive output characteristics of traction substation with this scheme are analyzed. The power supply calculation model of traction substation is established, allowing for the accurate active power loss of converter device, and a multi-state switching control strategy with hysteresis comparison is proposed to calculate the cooperative power flow for urban rail traction power supply system with a bidirectional converter device. Compared with Simulink simulation results, the effectiveness and accuracy of the algorithm are verified. In the simulation of a subway project, under the collaborative power supply scheme, when the traction network pressure increases, the maximum rail potential decreases by 12.6%–15.6% and 14.7%–17.5% up and down the whole line, respectively. The loss of DC traction power supply system and the overall cost of the system can be reduced by 9.7% and 1.17% at most. As the rectifier starting voltage of the bidirectional converter device increases, the rectifier/inverter power of some traction substations increases, and the loss of DC traction power supply system increases first and then decreases, but the rail potential changes little. In practice, when the inverter starting voltage of the bidirectional converter is fixed, increasing the rectifier starting voltage appropriately can achieve better energy saving.
[1] |
刘洋. 城市轨道交通全自动运行模式下的车地无线综合通信网络方案分析[J]. 城市轨道交通研究,2019,22(12): 22-25.
LIU Yang. Analysis of train/ground wireless communication under full automatic operation mode of urban rail transit[J]. Urban Mass Transit, 2019, 22(12): 22-25.
|
[2] |
陈昕,杨立新,王财华,等. 双向变流技术在轨道交通牵引供电系统中的应用[J]. 城市轨道交通研究,2022,25(8): 145-148,152.
CHEN Xin, YANG Lixin, WANG Caihua, et al. Engineering application of bidirectional converter technology in rail transit traction power supply system[J]. Urban Mass Transit, 2022, 25(8): 145-148,152.
|
[3] |
SONG S Y, MCCANN R, JANG G S. Cost-based adaptive droop control strategy for VSC-MTDC system[J]. IEEE Transactions on Power Systems, 2021, 36(1): 659-669. doi: 10.1109/TPWRS.2020.3003589
|
[4] |
吴红斌,杨超,陈煜,等. 基于电压源型换流器的多端直流配电网潮流计算[J]. 电力系统自动化,2018,42(11): 79-85,93.
WU Hongbin, YANG Chao, CHEN Yu, et al. VSC based power flow calculation of multi-terminal DC distribution network[J]. Automation of Electric Power Systems, 2018, 42(11): 79-85,93.
|
[5] |
王学奎,彭春华,孙惠娟. 考虑VSC控制策略的交直流混合电网潮流计算[J]. 中国电机工程学报,2023,43(10): 3731-3741.
WANG Xuekui, PENG Chunhua, SUN Huijuan. Power flow calculation of AC/DC hybrid power grid considering VSC control strategy[J]. Proceedings of the CSEE, 2023, 43(10): 3731-3741.
|
[6] |
ZHANG G, QIAN J L, ZHANG X Y. Application of a high-power reversible converter in a hybrid traction power supply system[J]. Applied Sciences, 2017, 7(3): 7030282.1-7030282.19.
|
[7] |
徐金平,杜贵府,朱纪法,等. 城市轨道交通双向变流式牵引供电系统的应用[J]. 城市轨道交通研究,2020,23(1): 179-182.
XV Jinping, DU Guifu, ZHU Jifa, et al. Application of bidirectional converter traction power supply system in urban rail transit[J]. Urban Mass Transit, 2020, 23(1): 179-182.
|
[8] |
张戬,刘炜,周瑞兵,等. 基于双向变流装置的城市轨道牵引供电系统潮流计算[J]. 中国铁道科学,2020,41(1): 92-98.
ZHANG Jian, LIU Wei, ZHOU Ruibing, et al. Power flow of traction power supply system for urban rail transit based on bidirectional converter device[J]. China Railway Science, 2020, 41(1): 92-98.
|
[9] |
ZHANG J, LIU W, TIAN Z B, et al. Modelling, simulating and parameter designing for traction power system with bidirectional converter devices[J]. IET Generation, Transmission & Distribution, 2022, 16(1): 110-122.
|
[10] |
HAO F J, ZHANG G, CHEN J, et al. Optimal voltage regulation and power sharing in traction power systems with reversible converters[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2726-2735. doi: 10.1109/TPWRS.2020.2968108
|
[11] |
田胜利. 城轨1500 V 24脉波整流二极管配置分析[J]. 都市快轨交通,2005(1): 31-33.
|
[12] |
刘飞,熊晓琪,查鹏程,等. 直流配电网网架结构与分布式光伏多目标协同优化[J]. 中国电机工程学报,2020,40(12): 3754-3765.
LIU Fei, XIONG Xiaoqi, ZHA Pengcheng, et al. Multi-objective collaborative optimization for DC distribution network configuration and distributed photovoltaic[J]. Proceedings of the CSEE, 2020, 40(12): 3754-3765.
|
[13] |
刘炜,张扬鑫,张戬,等. 考虑牵引所多运行状态的城轨交直流供电计算[J]. 西南交通大学学报,2020,55(6): 1163-1170.
LIU Wei, ZHANG Yangxin, ZHANG Jian, et al. Calculation of urban rail AC/DC power supply with traction substation in multi-operation modes[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1163-1170.
|
[14] |
刘炜,吴拓剑,禹皓元,等. 直流牵引供电系统地面储能装置建模与仿真分析[J]. 电工技术学报,2020,35(19): 4207-4215.
LIU Wei, WU Tuojian, YU Haoyuan, et al. Modeling and simulation of way-side energy storage devices in DC traction power supply system[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4207-4215.
|
[15] |
诸斐琴,杨中平,林飞,等. 城轨交通牵引供电系统参数与储能系统容量配置综合优化[J]. 电工技术学报,2019,34(3): 579-588.
ZHU Feiqin, YANG Zhongping, LIN Fei, et al. Synthetic optimization of traction power parameters and energy storage systems in urban rail transit[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 579-588.
|
[16] |
杜贵府,张栋梁,王崇林,等. 直流牵引供电系统电流跨区间传输对钢轨电位影响[J]. 电工技术学报,2016,31(11): 129-139.
DU Guifu, ZHANG Dongliang, WANG Chonglin, et al. Effect of traction current transmission among power sections on rail potential in DC mass transit system[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 129-139.
|