• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Ping, GAO Tianci, WANG Xin, YANG Cuiping, WANG Yuan. Smoothness Estimation of Super-large Bridges in Railway Line Based on Fitting Railway Plane and Profile[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 231-237, 272. doi: 10.3969/j.issn.0258-2724.20180295
Citation: LIU Wei, ZENG Jiaxin, MA Qingan, ZHANG Jian, XIONG Peng, QI He. Calculation of Collaborative Power Flow for Urban Rail Traction Power Supply System with Bidirectional Converter Device[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1145-1153. doi: 10.3969/j.issn.0258-2724.20220494

Calculation of Collaborative Power Flow for Urban Rail Traction Power Supply System with Bidirectional Converter Device

doi: 10.3969/j.issn.0258-2724.20220494
  • Received Date: 13 Jul 2022
  • Rev Recd Date: 04 Nov 2022
  • Available Online: 21 Apr 2023
  • Publish Date: 11 Nov 2022
  • The bidirectional converter device can effectively inhibit the fluctuation of the DC-side grid voltage at traction substation, reduce the current transmitted between regions, and limit the rail potential. As the collaborative control strategy of the bidirectional converter and rectifier unit will directly affect the power flow of urban rail traction power supply system, a coordinated power supply scheme composed of a bidirectional converter device and a 24-pulse rectifier is proposed, and the comprehensive output characteristics of traction substation with this scheme are analyzed. The power supply calculation model of traction substation is established, allowing for the accurate active power loss of converter device, and a multi-state switching control strategy with hysteresis comparison is proposed to calculate the cooperative power flow for urban rail traction power supply system with a bidirectional converter device. Compared with Simulink simulation results, the effectiveness and accuracy of the algorithm are verified. In the simulation of a subway project, under the collaborative power supply scheme, when the traction network pressure increases, the maximum rail potential decreases by 12.6%–15.6% and 14.7%–17.5% up and down the whole line, respectively. The loss of DC traction power supply system and the overall cost of the system can be reduced by 9.7% and 1.17% at most. As the rectifier starting voltage of the bidirectional converter device increases, the rectifier/inverter power of some traction substations increases, and the loss of DC traction power supply system increases first and then decreases, but the rail potential changes little. In practice, when the inverter starting voltage of the bidirectional converter is fixed, increasing the rectifier starting voltage appropriately can achieve better energy saving.

     

  • [1]
    刘洋. 城市轨道交通全自动运行模式下的车地无线综合通信网络方案分析[J]. 城市轨道交通研究,2019,22(12): 22-25.

    LIU Yang. Analysis of train/ground wireless communication under full automatic operation mode of urban rail transit[J]. Urban Mass Transit, 2019, 22(12): 22-25.
    [2]
    陈昕,杨立新,王财华,等. 双向变流技术在轨道交通牵引供电系统中的应用[J]. 城市轨道交通研究,2022,25(8): 145-148,152.

    CHEN Xin, YANG Lixin, WANG Caihua, et al. Engineering application of bidirectional converter technology in rail transit traction power supply system[J]. Urban Mass Transit, 2022, 25(8): 145-148,152.
    [3]
    SONG S Y, MCCANN R, JANG G S. Cost-based adaptive droop control strategy for VSC-MTDC system[J]. IEEE Transactions on Power Systems, 2021, 36(1): 659-669. doi: 10.1109/TPWRS.2020.3003589
    [4]
    吴红斌,杨超,陈煜,等. 基于电压源型换流器的多端直流配电网潮流计算[J]. 电力系统自动化,2018,42(11): 79-85,93.

    WU Hongbin, YANG Chao, CHEN Yu, et al. VSC based power flow calculation of multi-terminal DC distribution network[J]. Automation of Electric Power Systems, 2018, 42(11): 79-85,93.
    [5]
    王学奎,彭春华,孙惠娟. 考虑VSC控制策略的交直流混合电网潮流计算[J]. 中国电机工程学报,2023,43(10): 3731-3741.

    WANG Xuekui, PENG Chunhua, SUN Huijuan. Power flow calculation of AC/DC hybrid power grid considering VSC control strategy[J]. Proceedings of the CSEE, 2023, 43(10): 3731-3741.
    [6]
    ZHANG G, QIAN J L, ZHANG X Y. Application of a high-power reversible converter in a hybrid traction power supply system[J]. Applied Sciences, 2017, 7(3): 7030282.1-7030282.19.
    [7]
    徐金平,杜贵府,朱纪法,等. 城市轨道交通双向变流式牵引供电系统的应用[J]. 城市轨道交通研究,2020,23(1): 179-182.

    XV Jinping, DU Guifu, ZHU Jifa, et al. Application of bidirectional converter traction power supply system in urban rail transit[J]. Urban Mass Transit, 2020, 23(1): 179-182.
    [8]
    张戬,刘炜,周瑞兵,等. 基于双向变流装置的城市轨道牵引供电系统潮流计算[J]. 中国铁道科学,2020,41(1): 92-98.

    ZHANG Jian, LIU Wei, ZHOU Ruibing, et al. Power flow of traction power supply system for urban rail transit based on bidirectional converter device[J]. China Railway Science, 2020, 41(1): 92-98.
    [9]
    ZHANG J, LIU W, TIAN Z B, et al. Modelling, simulating and parameter designing for traction power system with bidirectional converter devices[J]. IET Generation, Transmission & Distribution, 2022, 16(1): 110-122.
    [10]
    HAO F J, ZHANG G, CHEN J, et al. Optimal voltage regulation and power sharing in traction power systems with reversible converters[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2726-2735. doi: 10.1109/TPWRS.2020.2968108
    [11]
    田胜利. 城轨1500 V 24脉波整流二极管配置分析[J]. 都市快轨交通,2005(1): 31-33.
    [12]
    刘飞,熊晓琪,查鹏程,等. 直流配电网网架结构与分布式光伏多目标协同优化[J]. 中国电机工程学报,2020,40(12): 3754-3765.

    LIU Fei, XIONG Xiaoqi, ZHA Pengcheng, et al. Multi-objective collaborative optimization for DC distribution network configuration and distributed photovoltaic[J]. Proceedings of the CSEE, 2020, 40(12): 3754-3765.
    [13]
    刘炜,张扬鑫,张戬,等. 考虑牵引所多运行状态的城轨交直流供电计算[J]. 西南交通大学学报,2020,55(6): 1163-1170.

    LIU Wei, ZHANG Yangxin, ZHANG Jian, et al. Calculation of urban rail AC/DC power supply with traction substation in multi-operation modes[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1163-1170.
    [14]
    刘炜,吴拓剑,禹皓元,等. 直流牵引供电系统地面储能装置建模与仿真分析[J]. 电工技术学报,2020,35(19): 4207-4215.

    LIU Wei, WU Tuojian, YU Haoyuan, et al. Modeling and simulation of way-side energy storage devices in DC traction power supply system[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4207-4215.
    [15]
    诸斐琴,杨中平,林飞,等. 城轨交通牵引供电系统参数与储能系统容量配置综合优化[J]. 电工技术学报,2019,34(3): 579-588.

    ZHU Feiqin, YANG Zhongping, LIN Fei, et al. Synthetic optimization of traction power parameters and energy storage systems in urban rail transit[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 579-588.
    [16]
    杜贵府,张栋梁,王崇林,等. 直流牵引供电系统电流跨区间传输对钢轨电位影响[J]. 电工技术学报,2016,31(11): 129-139.

    DU Guifu, ZHANG Dongliang, WANG Chonglin, et al. Effect of traction current transmission among power sections on rail potential in DC mass transit system[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 129-139.
  • Relative Articles

    [1]JIA Chaojun, CHEN Fanlei, LEI Mingfeng, HUANG Juan, SHI Chenghua, LIU Di. Determination Method of Rock Strength Based on Digital Drilling Parameters[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230328
    [2]HOU Chao, JIN Xiaoguang, HE Jie, FANG Zhiyuan. Freeze-Thaw Damage Characteristics of Anhydrite Rock Pore Structures Based on Nuclear Magnetic Resonance Technology[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230314
    [3]LIANG Jiguan, HUANG Linchong, MA Jianjun, CHEN Wanxian. Comparison of Stress-Dilatancy Rules and Research on Stress-Dilatancy Rule for Rocks[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230231
    [4]WU Hainan, XIE Qiang, LI Yue, WU Minger, YAN Cong. Theoretical Analysis and Experimental Study of T-Shaped Retrofitting Schemes of Diagonal Members for Transmission Towers[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240435
    [5]LI Yue, XIE Qiang, ZHANG Xin, ZHANG Jian. Cascading Failure Analysis of Transmission Tower–Line System Under Strong Wind[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 423-430. doi: 10.3969/j.issn.0258-2724.20220619
    [6]LI Jin, SHI Yuefeng, XIAO Xin, LOU Liangwei, CAI Degou, XIAO Feipeng. Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 281-288. doi: 10.3969/j.issn.0258-2724.20220335
    [7]LIN Pengzhen, WEI Yapeng, QIAO Yewei. Interfacial Stress and Failure Criteria of Steel Structure Coatings Under Wind-Sand Erosion[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 236-243. doi: 10.3969/j.issn.0258-2724.20210189
    [8]FENG Bo, LIU Qing, QIAN Yongjiu. Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089. doi: 10.3969/j.issn.0258-2724.20220035
    [9]WANG Zhaonan, ZHANG Yuanhai. Distortion Effect of Single Box Double-Cell Box Girders with Rectangular Cross Section[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1122-1129. doi: 10.3969/j.issn.0258-2724.20200813
    [10]LIU Youneng, HUANG Runqiu, LIU Enlong, LIAO Mengke. Influence of Freezing-Thawing Cycles on Mechanical Properties of Tailing Soil at Yunnan-Guizhou Plateau[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1052-1059. doi: 10.3969/j.issn.0258-2724.20180520
    [11]YAN Qixiang, LI Binjia, CHEN Hang, ZHANG Weilie, DENG Zhixin. Failure and Parametric Analysis of Shield Tunnel Bolts under Impact Load[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 23-31, 38. doi: 10.3969/j.issn.0258-2724.20160637
    [12]LIAO Ping, XIAO Lin, WEI Xing, ZHAO Renda, TANG Jishun. Fatigue Life Prediction and Parameter Analysis of Girder New Detail[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 639-644. doi: 10.3969/j.issn.0258-2724.2016.04.006
    [13]XU Jiang, LI Shuchun, LIU Yanbao, LI Kegang. Damage Constitutive Model of Rock Based on Drucker-Prager Criterion[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 278-282.
    [14]ZHENG Jia-shu, YUZhi-xiang. Analysis of Modal Properties of Cable-Net Structures[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 58-63.
    [15]FAN Li-li, WUNa, MA Yue. Parameter Analyses in the Model of Profit Sharing and Valuation of Technical Assets[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 693-697.
    [16]FengXingqiao, Cao Fuen. Brazil Test of Rocks with Bearing Plates of Press[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 337-342.
    [17]Jiang Chongx, Xie Qian. Real-Time Observation and Analysis of Meso-Fracture Behavior of Marble Samples[J]. Journal of Southwest Jiaotong University, 1999, 12(1): 89-92.
  • Cited by

    Periodical cited type(8)

    1. 严先萃,陈文,蔡镇羽,高帅,马天宇,刘向阳. 疲劳混凝土硫酸盐侵蚀抗压强度演化规律及预测模型. 常州大学学报(自然科学版). 2025(01): 68-75+92 .
    2. 李振中,马晨,龚博,李辉,皮振宇,徐名凤,周健. 高抗折矿渣硫铝酸盐水泥混凝土抗疲劳性能研究. 市政技术. 2024(03): 164-170+205 .
    3. 程思嫄,陈代果,古巍. 氧化石墨烯改性水泥基注浆材料的制备及力学性能研究. 功能材料. 2023(02): 2153-2158 .
    4. 蒋明慧,刘贵文,薛暄译. 聚丙烯纤维混凝土在腐蚀-疲劳耦合作用下耐久性性能试验分析. 混凝土. 2023(03): 163-165+170 .
    5. 胡晴,焦北辰. 硅酸盐水泥混凝土路面结构设计. 交通世界. 2023(34): 81-83 .
    6. 游帆,念梦飞,郑建岚,罗素蓉. 再生骨料混凝土弯曲疲劳性能研究. 建筑结构学报. 2022(04): 134-141 .
    7. 赵国良,董成,王雷. 荷载多变的混凝土弯曲疲劳数值仿真. 计算机仿真. 2022(09): 343-347+414 .
    8. 杜敏,武亮,张建铭. 长龄期中低热混凝土断裂性能试验研究. 混凝土. 2021(01): 57-60 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.3 %FULLTEXT: 24.3 %META: 70.1 %META: 70.1 %PDF: 5.7 %PDF: 5.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.8 %其他: 8.8 %其他: 0.1 %其他: 0.1 %Pathum Thani: 0.6 %Pathum Thani: 0.6 %上海: 1.8 %上海: 1.8 %上饶: 0.4 %上饶: 0.4 %东莞: 0.3 %东莞: 0.3 %临汾: 0.1 %临汾: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 10.9 %北京: 10.9 %十堰: 1.3 %十堰: 1.3 %南京: 1.3 %南京: 1.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.6 %哥伦布: 0.6 %嘉兴: 0.3 %嘉兴: 0.3 %大庆: 0.1 %大庆: 0.1 %天津: 2.1 %天津: 2.1 %安康: 0.4 %安康: 0.4 %宣城: 0.6 %宣城: 0.6 %常德: 0.1 %常德: 0.1 %平顶山: 0.3 %平顶山: 0.3 %张家口: 2.8 %张家口: 2.8 %徐州: 0.3 %徐州: 0.3 %成都: 2.1 %成都: 2.1 %扬州: 1.2 %扬州: 1.2 %昆明: 0.6 %昆明: 0.6 %曼谷: 0.1 %曼谷: 0.1 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.7 %杭州: 0.7 %松原: 0.1 %松原: 0.1 %武汉: 0.9 %武汉: 0.9 %江门: 0.1 %江门: 0.1 %池州: 1.2 %池州: 1.2 %沈阳: 0.4 %沈阳: 0.4 %洛阳: 0.4 %洛阳: 0.4 %济宁: 0.3 %济宁: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.7 %温州: 0.7 %港区: 0.4 %港区: 0.4 %漯河: 3.6 %漯河: 3.6 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %石家庄: 1.9 %石家庄: 1.9 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 9.0 %芒廷维尤: 9.0 %芝加哥: 1.6 %芝加哥: 1.6 %衡水: 0.1 %衡水: 0.1 %西宁: 28.9 %西宁: 28.9 %西安: 1.2 %西安: 1.2 %西雅图: 0.3 %西雅图: 0.3 %诺沃克: 0.7 %诺沃克: 0.7 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.7 %运城: 0.7 %郑州: 1.6 %郑州: 1.6 %重庆: 0.3 %重庆: 0.3 %长沙: 3.1 %长沙: 3.1 %青岛: 0.9 %青岛: 0.9 %鞍山: 0.3 %鞍山: 0.3 %其他其他Pathum Thani上海上饶东莞临汾兰州北京十堰南京哈尔滨哥伦布嘉兴大庆天津安康宣城常德平顶山张家口徐州成都扬州昆明曼谷朝阳杭州松原武汉江门池州沈阳洛阳济宁深圳温州港区漯河烟台焦作石家庄秦皇岛绵阳芒廷维尤芝加哥衡水西宁西安西雅图诺沃克贵阳运城郑州重庆长沙青岛鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(7)

    Article views(468) PDF downloads(50) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return