• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
PEI Xiangjun, LI Tiantao, HUANG Runqiu, WANG Shuang. Structural Features and Evolutionary History of Qiaojia Pull-Apart Basin[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 278-286. doi: 10.3969/j.issn.0258-2724.20170206
Citation: LIU Wei, LI You, ZHANG Jian, ZHANG Hao, ZHANG Yan. Calculation of Urban Rail AC/DC Power Supply with Intermittent Duty of Inverter Feedback Devices[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 384-391. doi: 10.3969/j.issn.0258-2724.20200594

Calculation of Urban Rail AC/DC Power Supply with Intermittent Duty of Inverter Feedback Devices

doi: 10.3969/j.issn.0258-2724.20200594
  • Received Date: 02 Sep 2020
  • Rev Recd Date: 09 Nov 2020
  • Available Online: 16 Dec 2020
  • Publish Date: 16 Dec 2020
  • In practical applications, inverter feedback devices work in intermittent duty, and its working characteristic model must be considered when determining its location and capacity design in the power supply calculation. Thus, an AC/DC alternating iterative power flow calculation algorithm with intermittent duty of inverter feedback devices is proposed for urban rail transit. A power-based dynamic adjustment strategy is proposed to realize state transition in the operation of inverter feedback devices. The full-day energy consumption is calculated for the entire line starting from the main substation, and the influences of the starting voltage of different inverter feedback devices, the no-load voltage of the rectifier unit and the number of train departures affect are analyzed. The whole line of an actual metro project is simulated and the simulation results prove that the proposed algorithm is more consistent with the load process of the inverter feedback devices in actual project. The statistical results show that the starting voltage of the inverter feedback devices will affect the system energy saving, and a proper starting voltage have a significantly favorable effect on the energy saving of the power supply system equipped with inverter feedback devices, which can save 12.23% of the energy consumption compared with the system without inverter feedback devices; when the no-load voltage of the rectifier is high, or when there are few trains, the starting voltage of the inverter feedback device should be reduced accordingly to obtain a better energy saving effect.

     

  • [1]
    ZHANG G, QIAN J L, ZHANG X Y. Application of a high-power reversible converter in a hybrid traction power supply system[J]. Applied Sciences, 2017, 7(3): 282. doi: 10.3390/app7030282
    [2]
    中国城市轨道交通协会. 中国城市轨道交通智慧城轨发展纲要[J]. 现代城市轨道交通,2020,8(4): 8-23.

    China Association of Metros. Smart urban rail development outline of urban rail transit in China[J]. Modern Urban Transit, 2020, 8(4): 8-23.
    [3]
    胡海涛,王江峰,何正友,等. 地铁牵引供电系统交-直流潮流算法研究[J]. 铁道学报,2012,34(11): 22-28. doi: 10.3969/j.issn.1001-8360.2012.11.004

    HU Haitao, WANG Jiangfeng, HE Zhengyou, et al. Study on power flow algorithm for metro traction supply system[J]. Journal of the China Railway Society, 2012, 34(11): 22-28. doi: 10.3969/j.issn.1001-8360.2012.11.004
    [4]
    BEERTEN J, COLE S, BELMANS R. Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms[J]. IEEE Transactions on Power Systems, 2012, 27(2): 821-829. doi: 10.1109/TPWRS.2011.2177867
    [5]
    柴润泽,张保会,薄志谦. 含电压源型换流器直流电网的交直流网络潮流交替迭代方法[J]. 电力系统自动化,2015,39(7): 7-13. doi: 10.7500/AEPS20140514005

    CHAI Runze, ZHANG Baohui, BO Zhiqian. Alternating iterative power flow algorithm for hybrid AC/DC networks containing DC grid based on voltage source converter[J]. Automation of Electric Power Systems, 2015, 39(7): 7-13. doi: 10.7500/AEPS20140514005
    [6]
    ARBOLEYA P, MOHAMED B, EL-SAYED I. DC railway simulation including controllable power electronic and energy storage devices[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5319-5329. doi: 10.1109/TPWRS.2018.2801023
    [7]
    刘炜,娄颖,张戬,等. 计及城市轨道逆变回馈装置的交直流统一供电计算[J]. 电工技术学报,2019,34(20): 4381-4391.

    LIU Wei, LOU Ying, ZHANG Jian, et al. Unified AC/DC power supply calculation taking into account urban rail inverter feedback devices[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4381-4391.
    [8]
    刘炜,张扬鑫,张戬,等. 考虑牵引所多运行状态的城轨交直流供电计算[J]. 西南交通大学学报,2020,55(6): 1163-1170. doi: 10.3969/j.issn.0258-2724.20190854

    LIU Wei, ZHANG Yangxin, ZHANG Jian, et al. Calculation of urban rail AC/DC power supply with traction substation in multioperation modes[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1163-1170. doi: 10.3969/j.issn.0258-2724.20190854
    [9]
    张驰,谭南林,刘敏杰,等. 地铁再生制动系统仿真及节能优化研究[J]. 中国铁道科学,2019,40(3): 112-118. doi: 10.3969/j.issn.1001-4632.2019.03.16

    ZHANG Chi, TAN Nanlin, LIU Minjie, et al. Research on simulation and energy saving optimization of regenerative braking system for subway[J]. China Railway Science, 2019, 40(3): 112-118. doi: 10.3969/j.issn.1001-4632.2019.03.16
    [10]
    ZHANG G, TIAN Z B, TRICOLI P, et al. Inverter operating characteristics optimization for DC traction power supply systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3400-3410. doi: 10.1109/TVT.2019.2899165
    [11]
    刘志刚,郝峰杰,陈杰,等. 城轨牵引供电系统车-地配合参数优化方法[J]. 北京交通大学学报,2019,43(1): 79-87. doi: 10.11860/j.issn.1673-0291.2019.01.009

    LIU Zhigang, HAO Fengjie, CHEN Jie, et al. Optimization method of train-ground coordination parameters for urban traction power supply system[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 79-87. doi: 10.11860/j.issn.1673-0291.2019.01.009
    [12]
    CHUANG H J, CHEN C S, LIN C H, et al. Optimization of inverter placement for mass rapid transit systems using genetic algorithm[C]//Transmission and Distribution Conference and Exhibition: Asia and Pacific. [S.l.]: IEEE, 2005: 1546968.1-1546968.6.
    [13]
    国家市场监督管理总局, 国家标准化管理委员会. 城市轨道交通再生制动能量吸收逆变装置: GB/T 37423—2019[S]. 北京: 中国标准出版社, 2019.
    [14]
    崔恒斌,冯晓云,林轩,等. 牵引网与交直交列车耦合系统谐波谐振特性仿真研究[J]. 中国电机工程学报,2014,34(16): 2736-2745.

    CUI Hengbin, FENG Xiaoyun, LIN Xuan, et al. Simulation study of the harmonic resonance characteristics of the coupling system with a traction network and AC-DC-AC trains[J]. Proceedings of the CSEE, 2014, 34(16): 2736-2745.
    [15]
    沈小军,曹戈. 基于压阻数的城轨交通地面储能系统选址方法[J]. 中国铁道科学,2020,41(1): 99-107.

    SHEN Xiaojun, CAO Ge. A site selection method of stationary energy storage system for urban rail transit based on number of low voltage and braking resistor[J]. China Railway Science, 2020, 41(1): 99-107.
  • Relative Articles

    [1]HAN Jialin, GAO Hongli, GUO Liang, LIU Xue, WU Tingting, LI Shichao. Bearing Fault Diagnosis Method Based on Order Tracking Without Rotational Speed[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 220-228. doi: 10.3969/j.issn.0258-2724.20220116
    [2]CHEN Bingyan, GU Fengshou, ZHANG Weihua, SONG Dongli, CHENG Yao. Axle-Box Bearing Fault Diagnosis Based on Multiband Weighted Envelope Spectrum[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 201-210. doi: 10.3969/j.issn.0258-2724.20220047
    [3]ZHOU Jingxuan, BAO Weidong, WANG Ji, ZHANG Dayu. Multi-Task Federated Learning for Unmanned Aerial Vehicle Swarms Based on Encoder-Decoder Architecture[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 933-941. doi: 10.3969/j.issn.0258-2724.20230539
    [4]WANG Yigang, ZHU Langxian, WANG Yupeng, ZHANG Hao, JIAO Yan. Characteristic Identification of Aerodynamic Noise Sources in High-Speed Train Bogie Area[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 261-271, 286. doi: 10.3969/j.issn.0258-2724.20210636
    [5]YANG Yueyi, WANG Lide, WANG Chong, WANG Huizhen, LI Ye. Fault Diagnosis Method Based on Deep Active Learning For MVB Network[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1342-1348, 1385. doi: 10.3969/j.issn.0258-2724.20210195
    [6]YE Qing, LIU Changhua, PAN Hao. Simultaneous Fault Diagnosis Method Based on Improved Sparse Bayesian Extreme Learning Machine[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 792-799. doi: 10.3969/j.issn.0258-2724.2016.04.026
    [7]ZHANG Yadong, ZHANG Jiye, ZHANG Liang, LI Tian. Numerical Analysis of Aerodynamic Noise of Motor Car Bogie for High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 870-877. doi: 10.3969/j.issn.0258-2724.2016.05.008
    [8]JIN Weidong, LÜ, Qianyong, SUN Yongkui. Extracting Fault Features of High-Speed Train Bogies Using Copula Function[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 676-682. doi: 10.3969/j.issn.0258-2724.2015.04.016
    [9]WANG Wenjing, WANG Yan, SUN Shouguang, LIANG Shulin. Long-Term Load Spectrum Test of High-Speed Train Bogie[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 84-89. doi: 10.3969/j.issn.0258-2724.2015.01.013
    [10]QIN Na, JIN Weidong, HUANG Jin, LI Zhimin, LIU Jingbo. Feature Extraction of High Speed Train Bogie Based on Ensemble Empirical Mode Decomposition and Sample Entropy[J]. Journal of Southwest Jiaotong University, 2014, 27(1): 27-32. doi: 10.3969/j.issn.0258-2724.2014.01.005
    [11]MI Caiying, LI Fu. Fatigue Strength of Bogie Frame of High-Speed Train under Spectrum Load[J]. Journal of Southwest Jiaotong University, 2006, 19(3): 381-385.
    [12]LIUZhuan-hua. Bogie Structures of Speed-Rising Freight Cars[J]. Journal of Southwest Jiaotong University, 2003, 16(3): 286-289.
    [13]WANGJue, LI Zhi. A Fault Diagnosis of Dynamic Systems Based on Unknown Input Observer Schemes[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 281-285.
    [14]DAIXiao-wen, ZHONG Gui-ying, WUHao-zhong. Application of the Wavelet Transform to the Failure Diagnosis of Tilting Trains[J]. Journal of Southwest Jiaotong University, 2000, 13(6): 651-655.
    [15]ZHONG Wen-sheng, LUO Shi-hui. Dynamic Analysis for Bogies of Locomotive Driving Tilting Train[J]. Journal of Southwest Jiaotong University, 2000, 13(6): 590-594.
  • Cited by

    Periodical cited type(5)

    1. 郭浩,齐咏生,张嘉英,马然,刘利强. 基于任意四边形拟合的轨道分割算法. 铁道学报. 2025(01): 112-122 .
    2. 孙雅娟,孙汉卿,冯志慧. 多目标跟踪下交通监控失真视频增强算法研究. 计算机仿真. 2025(01): 162-166 .
    3. 李恒超,刘香莲,刘鹏,冯斌. 基于多尺度感知的密集人群计数网络. 西南交通大学学报. 2024(05): 1176-1183+1214 . 本站查看
    4. 杨艳春,闫岩,王可. 基于注意力机制与光照感知网络的红外与可见光图像融合. 西南交通大学学报. 2024(05): 1204-1214 . 本站查看
    5. 肖鹏,王红茹. 一种用于局部低照度水下图像的自适应增强方法. 激光杂志. 2022(04): 114-119 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 35.1 %FULLTEXT: 35.1 %META: 55.3 %META: 55.3 %PDF: 9.6 %PDF: 9.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.0 %其他: 16.0 %其他: 0.5 %其他: 0.5 %Kennedy Town: 0.2 %Kennedy Town: 0.2 %Rochester: 0.1 %Rochester: 0.1 %上海: 2.0 %上海: 2.0 %东京: 0.1 %东京: 0.1 %东莞: 0.4 %东莞: 0.4 %东营: 0.1 %东营: 0.1 %临汾: 0.1 %临汾: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %佛山: 0.2 %佛山: 0.2 %保定: 0.2 %保定: 0.2 %兰州: 1.1 %兰州: 1.1 %凉山: 0.1 %凉山: 0.1 %北京: 7.3 %北京: 7.3 %十堰: 0.6 %十堰: 0.6 %南京: 1.9 %南京: 1.9 %南昌: 0.1 %南昌: 0.1 %南阳: 0.1 %南阳: 0.1 %台中: 0.1 %台中: 0.1 %合肥: 0.1 %合肥: 0.1 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %圣何塞: 0.2 %圣何塞: 0.2 %圣克拉拉: 0.3 %圣克拉拉: 0.3 %大庆: 0.5 %大庆: 0.5 %大连: 0.3 %大连: 0.3 %天津: 1.2 %天津: 1.2 %太原: 0.1 %太原: 0.1 %宁波: 0.3 %宁波: 0.3 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.3 %宣城: 0.3 %常州: 0.2 %常州: 0.2 %广州: 0.9 %广州: 0.9 %廊坊: 0.1 %廊坊: 0.1 %张家口: 0.9 %张家口: 0.9 %徐州: 0.2 %徐州: 0.2 %德阳: 0.2 %德阳: 0.2 %成都: 2.4 %成都: 2.4 %扬州: 0.5 %扬州: 0.5 %斯旺西: 0.1 %斯旺西: 0.1 %无锡: 0.2 %无锡: 0.2 %昆明: 0.9 %昆明: 0.9 %望加锡(乌戎潘当): 0.1 %望加锡(乌戎潘当): 0.1 %杭州: 0.7 %杭州: 0.7 %松原: 0.1 %松原: 0.1 %株洲: 0.1 %株洲: 0.1 %武汉: 0.7 %武汉: 0.7 %池州: 0.6 %池州: 0.6 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.1 %泰安: 0.1 %洛阳: 0.2 %洛阳: 0.2 %深圳: 0.6 %深圳: 0.6 %温州: 0.6 %温州: 0.6 %湖州: 0.1 %湖州: 0.1 %漯河: 2.2 %漯河: 2.2 %烟台: 0.1 %烟台: 0.1 %石家庄: 1.3 %石家庄: 1.3 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.2 %米兰: 0.2 %索姆省: 0.3 %索姆省: 0.3 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 22.5 %芒廷维尤: 22.5 %芝加哥: 0.3 %芝加哥: 0.3 %莱芜: 0.1 %莱芜: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 19.6 %西宁: 19.6 %西安: 1.4 %西安: 1.4 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.6 %贵阳: 0.6 %运城: 0.6 %运城: 0.6 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.8 %郑州: 0.8 %重庆: 0.6 %重庆: 0.6 %银川: 0.2 %银川: 0.2 %长沙: 1.7 %长沙: 1.7 %青岛: 0.7 %青岛: 0.7 %其他其他Kennedy TownRochester上海东京东莞东营临汾乌鲁木齐佛山保定兰州凉山北京十堰南京南昌南阳台中合肥吉林呼和浩特哈尔滨哥伦布嘉兴圣何塞圣克拉拉大庆大连天津太原宁波宜宾宣城常州广州廊坊张家口徐州德阳成都扬州斯旺西无锡昆明望加锡(乌戎潘当)杭州松原株洲武汉池州沈阳泰安洛阳深圳温州湖州漯河烟台石家庄福州秦皇岛米兰索姆省舟山芒廷维尤芝加哥莱芜衡阳衢州西宁西安诺沃克贵阳运城遵义邯郸郑州重庆银川长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views(303) PDF downloads(15) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return