• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
ZHANG Pengfei, TU Jian, GUI Hao, LEI Xiaoyan, LIU Linya. Mechanical Properties of CRTS Ⅱ Slab Ballastless Track on Bridge under Temperature Gradient Loads[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 945-952. doi: 10.3969/j.issn.0258-2724.20200244
Citation: ZHANG Pengfei, TU Jian, GUI Hao, LEI Xiaoyan, LIU Linya. Mechanical Properties of CRTS Slab Ballastless Track on Bridge under Temperature Gradient Loads[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 945-952. doi: 10.3969/j.issn.0258-2724.20200244

Mechanical Properties of CRTS Slab Ballastless Track on Bridge under Temperature Gradient Loads

doi: 10.3969/j.issn.0258-2724.20200244
  • Received Date: 27 Apr 2020
  • Rev Recd Date: 10 Aug 2020
  • Available Online: 27 May 2021
  • Publish Date: 15 Oct 2021
  • In order to study the influence of transverse and vertical temperature gradients on the longitudinal mechanical performance of CRTSⅡ slab ballastless track on the bridge, on the basis of the beam-slab-rail interaction principle, a refined spatial finite element model is established for the continuous welded rails (CWRs) of CRTSⅡ slab ballastless track on the long-span bridge. The longitudinal force and displacement of rails and bridge structure on southern and northern surfaces are calculated under the transverse and vertical temperature gradient loads. Analysis results indicate that the vertical temperature gradient of the track slab has little effect on the longitudinal force and displacement of the rail under the same temperature load. When the transverse temperature difference between the southern and northern surface is 10 ℃, the maximum longitudinal force of the rail at the northern side of the continuous beam is 1.4 times that at the southern side, and the maximum longitudinal force of the pier at the northern side of the continuous beam is 3.5 times that at the southern side. Under the action of the transverse temperature gradient, the longitudinal force of the rail is generated by the combined effect of beam dilation and torsion d eformations. The greater transverse temperature gradient leads to the greater maximum longitudinal force and displacement of the rail at the northern side, and the smaller maximum longitudinal force and displacement of the rail at the southern side. The transverse and vertical temperature gradient do no contribute to the safe use of the track and bridge structure. Therefore, in the area of high temperature difference, it is necessary to focus on the stress of the rail, track slab and bridge pier top when designing the east-west of CWRs on long-span bridge, and ensure the transverse stability of the CWR on the bridge.

     

  • loading
  • 赵国堂,高亮,赵磊,等. CRTS Ⅱ型板式无砟轨道板下离缝动力影响分析及运营评估[J]. 铁道学报,2017,39(1): 1-10.

    ZHAO Guotang, GAO Liang, ZHAO Lei, et al. Analysis of dynamic effect of gap under CRTS Ⅱ track slab and operation evaluation[J]. Journal of the China Railway Society, 2017, 39(1): 1-10.
    LIU Xueyi, ZHAO Pingrui, DAI Feng. Advances in design theories of high-speed railway ballastless tracks[J]. Journal of Modern Transportation, 2011, 19(3): 154-162. doi: 10.1007/BF03325753
    刘钰,赵国堂. CRTSⅡ型板式无砟轨道结构层间早期离缝研究[J]. 中国铁道科学,2013,34(4): 1-7.

    LIU Yu, ZHAO Guotang. Analysis of early gap between layers of CRTS Ⅱ slab ballastless track structure[J]. China Railway Science, 2013, 34(4): 1-7.
    刘学毅,李佳莉,康维新,等. 无砟轨道温度简便计算及极端天气影响分析[J]. 西南交通大学学报,2017,52(6): 1037-1045,1060. doi: 10.3969/j.issn.0258-2724.2017.06.001

    LIU Xueyi, LI Jiali, KANG Weixin, et al. Simplified calculation of temperature in concrete slabs of ballastless track and influence of extreme weather[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1037-1045,1060. doi: 10.3969/j.issn.0258-2724.2017.06.001
    欧祖敏,孙璐. 基于概率需求的高速铁路无砟轨道板温度荷载取值研究Ⅱ:温度梯度作用[J]. 铁道学报,2018,40(1): 80-86. doi: 10.3969/j.issn.1001-8360.2018.01.013

    OU Zumin, SUN Lu. Value of temperature loads on probability demand for ballastless track slab Ⅱ:thermal gradient actions[J]. Journal of the China Railway Society, 2018, 40(1): 80-86. doi: 10.3969/j.issn.1001-8360.2018.01.013
    曾志平,孟晓白,宋善义,等. 线路环境对双块式无砟轨道道床板温度场影响[J]. 铁道工程学报,2018,35(3): 12-17,37. doi: 10.3969/j.issn.1006-2106.2018.03.003

    ZENG Zhiping, MENG Xiaobai, SONG Shanyi, et al. The influence of track line environment on temperature field of double-block ballastless track bed slab[J]. Journal of Railway Engineering Society, 2018, 35(3): 12-17,37. doi: 10.3969/j.issn.1006-2106.2018.03.003
    ZENG Zhiping, HUANG Zhibin, YIN Huatuo, et al. Influence of track line environment on the temperature field of a double-block ballastless track slab[J]. Advances in Mechanical Engineering, 2018, 10(12): 1-16.
    曲村, 高亮, 乔神路. 高速铁路长大桥梁CRTSⅠ型板式无砟轨道无缝线路力学特性分析[J]. 铁道标准设计, 2011(4): 12-16.
    蔡小培,高亮,孙汉武,等. 桥上纵连板式无砟轨道无缝线路力学性能分析[J]. 中国铁道科学,2011,32(6): 28-33.

    CAI Xiaopei, GAO Liang, SUN Hanwu, et al. Analysis on the mechanical properties of longitudinally connected ballastless track continuously welded rail on bridge[J]. China Railway Science, 2011, 32(6): 28-33.
    曲村,高亮,乔神路,等. 高速铁路长大桥梁CRTSⅠ型双块式无砟轨道无缝线路影响因素分析[J]. 铁道工程学报,2011,28(3): 46-51,63. doi: 10.3969/j.issn.1006-2106.2011.03.009

    QU Cun, GAO Liang, QIAO Shenlu, et al. Analysis of influence factors on CRTS Ⅰ double-block ballastless track CWR on long-span bridge of high-speed railway[J]. Journal of Railway Engineering Society, 2011, 28(3): 46-51,63. doi: 10.3969/j.issn.1006-2106.2011.03.009
    谢铠泽,王平,徐井芒,等. 桥上单元板式无砟轨道无缝线路的适应性[J]. 西南交通大学学报,2014,49(4): 649-655. doi: 10.3969/j.issn.0258-2724.2014.04.014

    XIE Kaize, WANG Ping, XU Jingmang, et al. Adaptability of continuous welded rail of unit slab non-ballast track on bridges[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 649-655. doi: 10.3969/j.issn.0258-2724.2014.04.014
    闫斌,戴公连. 高速铁路斜拉桥上无缝线路纵向力研究[J]. 铁道学报,2012,34(3): 83-87. doi: 10.3969/j.issn.1001-8360.2012.03.014

    YAN Bin, DAI Gonglian. CWR longitudinal force of cable-stayed bridge of high-speed railway[J]. Journal of the China Railway Society, 2012, 34(3): 83-87. doi: 10.3969/j.issn.1001-8360.2012.03.014
    DAI Gonglian, YAN Bin. Longitudinal forces of continuously welded track on high-speed railway cable-stayed bridge considering impact of adjacent bridges[J]. Journal of Central South University, 2012, 19(8): 2348-2353. doi: 10.1007/s11771-012-1281-1
    DAI Gonglian, LIU Wenshuo. Applicability of small resistance fastener on long-span continuous bridges of high-speed railway[J]. Journal of Central South University, 2013, 20(5): 1426-1433. doi: 10.1007/s11771-013-1631-7
    戴公连,葛浩,刘文硕,等. 实测温度下大跨度桥上纵连无砟轨道受力研究[J]. 铁道工程学报,2017,34(5): 26-31,93. doi: 10.3969/j.issn.1006-2106.2017.05.006

    DAI Gonglian, GE Hao, LIU Wenshuo, et al. Analysis of longitudinally connected ballastless track on the high-speed railway long-span bridge based on the actual measured temperature[J]. Journal of Railway Engineering Society, 2017, 34(5): 26-31,93. doi: 10.3969/j.issn.1006-2106.2017.05.006
    DAI Gonglian, GE Hao, LIU Wenshuo, et al. Interaction analysis of continuous slab track (CST) on long-span continuous high-speed rail bridges[J]. Structural Engineering and Mechanics, 2017, 63(6): 713-723.
    曲村. 高速铁路长大桥梁无砟轨道无缝线路设计理论及方法研究[D]. 北京: 北京交通大学, 2013.
    雷笑,叶见曙,王毅. 日照作用下混凝土箱梁的温差代表值[J]. 东南大学学报(自然科学版),2008,38(6): 1105-1109.

    LEI Xiao, YE Jianshu, WANG Yi. Representative value of solar thermal difference effect on PC box-girder[J]. Journal of Southeast University (Natural Science Edition), 2008, 38(6): 1105-1109.
    欧祖敏,孙璐,程群群. 高速铁路无砟轨道温度场简化计算方法[J]. 浙江大学学报(工学版),2015,49(3): 482-487.

    OU Zumin, SUN Lu, CHENG Qunqun. Simplified calculation of temperature field in high-speed railway ballastless track structure[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(3): 482-487.
    国家铁路局. 高速铁路设计规范: TB 10621—2014[S]. 北京: 中国铁道出版社, 2015.
    CHEN Ji, HU Zeyong, DOU Shun, et al. Yin-Yang slope problem along Qinghai-Tibetan lines and its radiation mechanism[J]. Cold Regions Science and Technology, 2006, 44(3): 217-224. doi: 10.1016/j.coldregions.2005.12.001
    中国第四勘察设计院集团有限公司. 铁路无缝线路设计规范: TB 10015—2012[S]. 北京: 中国铁道出版社, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article views(595) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return