• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 29 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
WANG Biao, XIE Kaize, XIAO Jieling, WANG Ping. Test Principle and Test Scheme of Longitudinal Force in Continuous Welded Rail Using Resistance Strain Gauge[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 43-49. doi: 10.3969/j.issn.0258-2724.2016.01.007
Citation: WANG Biao, XIE Kaize, XIAO Jieling, WANG Ping. Test Principle and Test Scheme of Longitudinal Force in Continuous Welded Rail Using Resistance Strain Gauge[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 43-49. doi: 10.3969/j.issn.0258-2724.2016.01.007

Test Principle and Test Scheme of Longitudinal Force in Continuous Welded Rail Using Resistance Strain Gauge

doi: 10.3969/j.issn.0258-2724.2016.01.007
  • Received Date: 06 Apr 2015
  • Publish Date: 25 Jan 2016
  • To test longitudinal force in continuous welded rails (CWRs), based on the bi-directional strain approach, a new test scheme using resistance strain gage was proposed. The test principle was systematically presented,and the errors of different test schemes were compared by taking into account the thermal output of resistance strain gage and uneven temperature distribution on the same rail section. The results show that, firstly, the test error mainly comes from uneven temperature distribution on the rail section. Secondly, when testing the longitudinal or vertical strain in CWRs, the thermal output of resistance strain gage and the influence of the longitudinal and vertical constraints of rail on the thermal output must be considered. In addition, all longitudinal force test schemes with resistance strain gage can not directly separate temperature force from the additional expansion force. Finally, the proposed scheme can offset bending strain caused by loads without additional compensation plate, and when both sides of the rail web have 2 ℃ temperature difference, compared to the two existing test schemes, the measurement error is reduced by 84.0% and 60.3%, respectively.

     

  • loading
  • CHEN R, WANG P, WEI X K. Track-bridge longitudinal interaction of continuous welded rails on arch bridge[J]. Mathematical Problems in Engineering, 2013(1): 237-245.
    王平,刘浩,魏贤奎. 铁路斜拉桥上无缝线路纵向力规律分析[J]. 交通运输工程学报,2013,13(5): 27-32. WANG Ping, LIU Hao, WEI Xiankui. Analysis on longitudinal force regulations of cwr on railway cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 27-32.
    卢耀荣. 无缝线路研究与应用[M]. 北京:中国铁道出版社,2004: 140-188.
    谢铠泽,王平,徐井芒,等. 桥上单元板式无砟轨道无缝线路的适应性[J]. 西南交通大学学报,2014,49(4): 649-655. XIE Kaize, WANG Ping, XU Jingmang, et al. Adaptability of continuous welded rail of unit slab non- ballast track on bridges[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 649-655.
    游林涛. 无缝钢轨纵向温度力的仿真分析与实验研究[D]. 大连:大连理工大学,2014.
    薛松. 钢轨纵向应力分布变化研究[D]. 大连:大连理工大学,2012.
    刘文硕. 高速铁路大跨度钢桁拱桥梁轨相互作用研究[D].长沙:中南大学,2013.
    YAN Lianshan, ZHANG Zhaoting, WANG Ping, et al. Fiber sensors for strain measurements and axle counting in high-speed railway applications[J]. IEEE Sensors Journal, 2011, 11(7): 1587-1594.
    张兆亭,闫连山,王平,等. 基于光纤光栅的钢轨应变测量关键技术研究[J]. 铁道学报,2012,34(5): 65-69. ZHANG Zhaoting, YAN Lianshan, WANG Ping, et al. Key techniques for rail strain measurements based on fiber bragg grating sensor[J]. Journal of the China Railway Society, 2012, 34(5): 65-69.
    WANG Chungyue, TSAI Hsinchu, CHEN Chishian, et al. Railway track performance monitoring and safety warning system[J]. Journal of Performance of Constructed Facilities, 2011, 35(6): 577-586.
    冯邵敏. 高速铁路长大桥梁无砟轨道无缝线路纵向力监测与分析[D]. 南昌:华东交通大学,2012.
    冯邵敏,雷晓燕,张鹏飞,等. 桥上无缝线路附加伸缩力的远程监测与分析[J]. 华东交通大学学报,2011,28(2): 1-5. FENG Shaomin, LEI Xiaoyan, ZHANG Pengfei, et al. The remote monitoring and analysis of additional contractility from the CWR on bridge[J]. Journal of East China Jiaotong University, 2011, 28(2): 1-5.
    丁杰雄. 钢轨温度应力监测装置:中国, CN201120140230.X[P]. 2012-01-11.
    AEA Technology Rail. Findings from the investigation of SFE measurement techniques[R]. London: AEA Technology Rail, 2006
    李以辉. 分布式钢轨应力无线监测系统硬件研究[D]. 大连:大连理工大学,2013.
    广钟岩,高慧安. 铁路无缝线路[M]. 4版. 北京:人民交通出版社,2010: 16-31.
    孙训方,方孝淑,关来泰. 材料力学(Ⅰ)[M]. 4版. 北京:高等教育出版社,2002: 208-240.
    尹福炎. 瞬态加热条件下高温应变计测量误差的修正方法[J]. 强度与环境,2005,32(1): 36-42. YIN Fuyan. Correction technique for high temperature strain gage under transient heating conditions[J]. Structure Environment Engineering, 2005, 32(1): 36-42.
    高勇军,葛少学,岳中涛,等. 钢轨全断面有效温度的测量及数据分析[J]. 铁道工程学报,2002(2): 11-15. GAO Yongjun, GE Shaoxue, YUE Zhongtao, et al. Measurement of effective temperature in full cross-section of steel rail and the data analysis[J]. Journal of Railway Engineering Society, 2002(2): 11-15.
    计欣华,邓宗白,鲁阳,等. 工程实验力学[M]. 2版. 北京:机械工业出版社,2010: 7-29.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(896) PDF downloads(256) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return