• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 29 Issue 6
Nov.  2016
Turn off MathJax
Article Contents
REN Juanjuan, ZHAO Huawei, LI Xiao, DENG Shijie, XU Kun. Dynamic Performances of CRTS Ⅲ Prefabricated Slab Track with Anti-vibration Structure in Subgrade-Tunnel Transition Section[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1047-1054. doi: 10.3969/j.issn.0258-2724.2016.06.002
Citation: REN Juanjuan, ZHAO Huawei, LI Xiao, DENG Shijie, XU Kun. Dynamic Performances of CRTS Ⅲ Prefabricated Slab Track with Anti-vibration Structure in Subgrade-Tunnel Transition Section[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1047-1054. doi: 10.3969/j.issn.0258-2724.2016.06.002

Dynamic Performances of CRTS Ⅲ Prefabricated Slab Track with Anti-vibration Structure in Subgrade-Tunnel Transition Section

doi: 10.3969/j.issn.0258-2724.2016.06.002
  • Received Date: 14 Sep 2015
  • Publish Date: 25 Dec 2016
  • In order to choose a proper length of the transition section and minimize negative impacts of the change of rail deflection between the subgrade-tunnel transition section on the track safety and the ride comfort, a vertical coupling dynamic model of CRTS Ⅲ slab track in subgrade-tunnel transition section was established using the finite element method and vehicle-track coupling dynamics theory. In this model, the change rate of rail deflection, vehicle acceleration, and wheel-rail force are taken as evaluation indexes to characterize the dynamic behavior of the system in the transition section. Through analysis, reasonable stiffness and layout of anti-vibration rubber pad is suggested for the transition section with the damping cushion set up both in subgrade and tunnel, and the length of transition section is proposed for the transition section with the damping cushion set up in tunnel only. The results indicate that a hierarchical stiffness of the anti-vibration rubber pad can be applied in the subgrade-tunnel transition section, and the stiffness ratio should be no more than 2. In order to ensure the running safety and reduce the workload of maintenance and repair in the subgrade-tunnel transition section, the length should be within the range of 25-30 m for controlling of the vertical acceleration of car body.

     

  • loading
  • XU Qingyuan, CHEN Xiaoping, YAN Bin, et al. Study on vibration reduction slab track and adjacent transition section in high-speed railway tunnel[J]. Journal of Vibroengineering, 2015, 17(2):905-916.
    PAIXAO A, FORTUNATO E, CALCADA R. Transition zones to railway bridges:track measurements and numerical modelling[J]. Engineering Structures, 2014, 80(12):435-443.
    DOANH B P, LUO Qiang, WEI Yongxing, et al. Dynamics performance of subgrade-tunnel transition on chongqing-suining ballastless track[J]. Journal of Southwest Jiaotong University, 2009, 17(3):223-228.
    PLOTKIN D, DAVIS D. Bridge approaches and track stiffness[R].:Federal Railroad Administration, 2008.
    练松良,王继军. 路桥过渡段轨道结构的动力性能试验研究[J]. 中国铁道科学,2009,30(4):19-23. LIAN Songliang, WANG Jijun. Test study on the dynamic performance of the track structure at the transition section between bridge and plain track[J]. China Railway Science, 2009, 30(4):19-23.
    任娟娟,严晓波,徐光辉,等. 底座板脱空对板式无砟轨道行车动力特性的影响[J]. 西南交通大学学报,2014,49(6):961-966. REN Juanjuan, YAN Xiaobo, XU Guanghui, et al. Effects of contact loss underneath concrete roadbed on dynamic performances of slab track-subgrade system[J]. Journal of Southwest Jiaotong University, 2014, 49(6):961-966.
    张重王. CRTSⅠ型板式轨道的动力特性及伤损影响研究[D]. 成都:西南交通大学,2015.
    蔡成标,徐鹏. 高速铁路无砟轨道关键设计参数动力学研究[J]. 西南交通大学学报,2010,45(4):493-497. CAI Chengbiao, XU Peng. Dynamic analysis of key design parameters for ballastless track of high-speed railway[J]. Journal of Southwest Jiaotong University, 2010, 45(4):493-497.
    翟婉明. 车辆-轨道耦合动力学[M]. 北京:科学出版社,2007:265-273.
    周毅. CRTSⅢ型板式轨道减振特性研究[D]. 成都:西南交通大学,2011.
    胡萍. 高速铁路无砟轨道密集过渡段路基动力试验与仿真分析[D]. 长沙:中南大学,2010.
    张家海. CRTSⅠ型板式无砟轨道抬升修复技术研究[J]. 上海铁道科技,2013(4):71-73. ZHANG Jiahai. Study on uplift remedy technology for CRTSⅠslab-type ballastless track[J]. Shanghai Railway Science Technology, 2013(4):71-73.
    郑新国,刘竞,李书明,等. 高速铁路沉降无砟轨道结构注浆整体抬升修复关键技术[J]. 铁道建筑,2015(1):93-96. ZHENG Xinguo, LIU Jing, LI Shuming, et al. Key technologies of remedying settlement of high speed railway ballastless track by lifting whole structure and jet-grouting under it[J]. Railway Engineering, 2015(1):93-96.
    徐坤. 减振型CRTS Ⅲ板式无砟轨道振动性能研究[D]. 成都:西南交通大学,2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(534) PDF downloads(283) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return