• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WU Fangyin, HE Chuan, WANG Bo, ZHANG Junbo, MENG Wei, LIU Jinsong. Rock Burst Intensity Classification of Lhasa−Linzhi Railway Based on Stress Criterion[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 792-800. doi: 10.3969/j.issn.0258-2724.20191167
Citation: WU Fangyin, HE Chuan, WANG Bo, ZHANG Junbo, MENG Wei, LIU Jinsong. Rock Burst Intensity Classification of Lhasa−Linzhi Railway Based on Stress Criterion[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 792-800. doi: 10.3969/j.issn.0258-2724.20191167

Rock Burst Intensity Classification of Lhasa−Linzhi Railway Based on Stress Criterion

doi: 10.3969/j.issn.0258-2724.20191167
  • Received Date: 23 Dec 2019
  • Rev Recd Date: 09 May 2020
  • Available Online: 29 Mar 2021
  • Publish Date: 15 Aug 2021
  • The rockburst prediction results of a tunnel in the Lhasa−Linzhi railway cannot meet the actual situation on site by applying the existing criteria directly. In order to formulate the rockburst intensity classification scheme and stress criterion for the whole line of the Lhasa−Linzhi railway, the measurement of the wall stress after tunnel excavation, point load test on rock samples and the excavation simulation based two-stage back analysis of initial geostress field were carried out based on the in-situ rockburst development characteristics and rules, rockburst failure trace in Sangzhuling tunnel of the Lhasa−Linzhi railway and kNN (k-nearest neighbor classification) algorithm, and then the rockburst intensity classification scheme and stress criterion for the Lhasa−Linzhi railway were proposed. After the verification of the prediction accuracy of rockburst in the Sangzhuling tunnel, the criterion was applied to the rockburst prediction of typical rock burst tunnels (the Zhulagang tunnel, the Dagala tunnel and the Gangmula tunnel) of the Lhasa−Linzhi railway, and the results are compared with the existing ones. The results show that for the Lhasa−Linzhi railway, the Russenes rockburst criterion will underestimate the occurrence of slight rockburst, but it is better to judge moderate rockburst. The rock burst grade judged by the Wang Lansheng criterion mainly focuses on slight rockburst, and the actual moderate and strong rockburst grades are not correctly judged, which indicates that it is easy to underestimate the actual rockburst grade. The rockburst grade judged by the Guanbaoshu criterion mainly focuses on strong rockburst, and it is easy to overestimate the actual rockburst grade because it basically does not correctly judge the actual slight and moderate rockburst grade. The rockburst criterion of the Lhasa−Linzhi railway is equal to the Lu Sen criterion in judging moderate rock burst grade, and its accuracy rate of rockburst prediction results is higher than other criteria, which is more in line with the actual situation of the Lhasa−Linzhi railway.

     

  • 冯夏庭,肖亚勋,丰光亮,等. 岩爆孕育过程研究[J]. 岩石力学与工程学报,2019,38(4): 649-673.

    FENG Xiating, XIAO Yaxun, FENG Guangliang, et al. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 649-673.
    WEI J. The Effect of excavation disturbance on rockburst trigger under different horizontal geostress[C]//Second International Conference on Geotechnical and Earthquake Engineering. Chengdu: [s.n.], 2013: 213-222.
    ZHOU J, SHI X Z, DONG L, et al. Fisher discriminant analysis model and its application for prediction of classification of rockburst in deep-buried long tunnel[J]. Journal of Coal Science & Engineering (China), 2010(2): 36-41.
    ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts[J]. Tunnelling and Underground Space Technology, 1994, 9(1): 59-65.
    李鹏翔, 陈炳瑞, 周扬一, 等. 硬岩岩爆预测预警研究进展[J]. 煤炭学报: 2019, 44(增刊2): 55-73.

    LI Pengxiang, CHEN Bingrui, ZHOU Yangyi, et al. Review of the research progress of rockburst prediction and early warning in hard rock underground engineering[J]. Journal of China Coal Society, 2019, 44(S2): 55-73.
    马振旺,汪波,王志伟,等. 基于应力解除法的九岭山隧道洞壁二次应力场分布规律研究[J]. 水利水电技术,2019,50(2): 184-190.

    MA Zhenwang, WANG bo, WANG Zhiwei, et al. Stress relief method-based study on distribution law of secondary stress field in tunnel wall of Jiuling Mountain Tunnel[J]. Water Resources and Hydropower Engineering, 2019, 50(2): 184-190.
    郭建强,刘新荣. 强度准则与岩爆判据统一的研究[J]. 岩石力学与工程学报,2018,37(增刊1): 3340-3352.

    GUO Jianqiang, LIU Xinrong. Study on the uniformity between strength criterion and rockburst criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3340-3352.
    严健,何川,汪波,等. 热力耦合作用下拉林铁路桑珠岭隧道岩爆预测[J]. 西南交通大学学报,2018,53(3): 434-441. doi: 10.3969/j.issn.0258-2724.2018.03.002

    YAN Jian, HE Chuan, WANG Bo, et al. Prediction of rock bursts for Sangzhuling tunnel located on lhasa-nyingchi railway under coupled thermo-mechanical effects[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 434-441. doi: 10.3969/j.issn.0258-2724.2018.03.002
    夏舞阳. 高地应力场单线铁路隧道岩爆预测研究[D]. 成都: 西南交通大学, 2018.
    张镜剑,傅冰骏. 岩爆及其判据和防治[J]. 岩石力学与工程学报,2008,27(10): 2034-2042. doi: 10.3321/j.issn:1000-6915.2008.10.010

    ZHANG Jingjian, FU Bingjun. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 2008,27(10): 2034-2042. doi: 10.3321/j.issn:1000-6915.2008.10.010
    HOEK E, BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165-1186. doi: 10.1016/S1365-1609(97)80069-X
    徐林生,王兰生. 二郎山公路隧道岩爆特征与防治措施研究[J]. 中国公路学报,2003,16(1): 75-77.

    XU Linsheng, WANG Lansheng. Study on rock burst characteristics and prevention measures of Langshan highway tunnel[J]. China Journal of Highway and Transport, 2003,16(1): 75-77.
    彭祝,王元汉,李廷芥. Griffith理论与岩爆的判别准则[J]. 岩石力学与工程学报,1996(增刊1): 491-495.

    PENG Zhu, WANG Yuanhan, LI Tingjie. Griffith theory and criteria for discrimination of rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 1996(S1): 491-495.
    陶振宇. 高地应力区的岩爆及其判别[J]. 人民长江,1987(5): 25-32.

    TAO Zhenyu. Rockburst in high stress area and its discrimination[J]. Yangtze River, 1987(5): 25-32.
    张津生,陆家佑,贾愚如. 天生桥二级水电站引水隧洞岩爆研究[J]. 水力发电,1991(10): 34-37,76.

    ZHANG Jinsheng, LU Jiayou, JIA Yuru. Study on Rockburst of diversion tunnel of Tianshengqiao second stage hydropower station[J]. Water Power, 1991(10): 34-37,76.
    姚宝魁,张承娟. 高地应力坝区硐室围岩岩爆及其断裂破坏机制[J]. 水文地质工程地质,1985(6): 17-20.

    YAO Baokui, ZHANG Chengjuan. Rockburst and fracture mechanism of surrounding rock in high stress dam area[J]. Hydrogeology & Engineering Geology, 1985(6): 17-20.
    GUO G, WANG H, BELL D, et al. KNN model-based approach in classification[C]//OTM Confederated International Conferences. Heidelberg: Springer, 2003: 1-12.
    乔亚琴,马盈仓,陈红,等. 构造样本k近邻数据的多标签分类算法[J]. 计算机工程与应用,2018,54(6): 135-142. doi: 10.3778/j.issn.1002-8331.1707-0337

    QIAO Yaqin, MA Yingcang, CHEN Hong, et al. Multi-label classification algorithm of structure sample k-nearest neighbors data[J]. Computer Engineering and Applications, 2018, 54(6): 135-142. doi: 10.3778/j.issn.1002-8331.1707-0337
    严健,何川,汪波,等. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征[J]. 岩石力学与工程学报,2019,38(4): 769-781.

    YAN Jian, HE Chuan, WANG Bo, et al. Inoculation and characters of rockbursts in extra-long and deep-lying tunnels located on Yarlung Zangbo suture[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 769-781.
    王兰生,李天斌,徐进,等. 二郎山公路隧道岩爆及岩爆烈度分级[J]. 公路,1999(2): 41-45.

    WANG Lansheng, LI Tianbin, XU Jin, et al. Classification of rockburst intensity and rockburst intensity in Erlangshan highway tunnel[J]. Highway, 1999(2): 41-45.
    蒙伟,何川,汪波,等. 基于侧压力系数的岩爆区初始地应力场二次反演分析[J]. 岩土力学,2018,39(11): 4191-4200,4209.

    MENG Wei, HE Chuan, WANG Bo, et al. Two-stage back analysis of initial geostress field in rockburst area based on lateral pressure coefficient[J]. Rock and Soil Mechanics, 2018, 39(11): 4191-4200,4209.
    王庆武,巨能攀,杜玲丽,等. 拉林铁路桑日至加查段三维地应力场反演分析[J]. 岩土力学,2018,39(4): 1450-1462.

    WANG Qingwu, JU Nengpan, DU Lingli, et al. Three dimensional inverse analysis of geostress field in the Sangri–Jiacha section of Lhasa–Linzhi railway[J]. Rock and Soil Mechanics, 2018, 39(4): 1450-1462.
    王庆武. 拉林铁路桑珠岭隧道地应力场分析及岩爆预测研究[D]. 成都: 成都理工大学, 2017.
    王元汉,李卧东,李启光,等. 岩爆预测的模糊数学综合评判方法[J]. 岩石力学与工程学报,1998,17(5): 15-23.

    WANG Yuanhan, LI Wodong, LI Qiguang, et al. Fuzzy mathematical comprehensive evaluation method for rockburst prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 1998,17(5): 15-23.
    张志强,关宝树,翁汉民. 岩爆发生条件的基本分析[J]. 铁道学报,1998,20(4): 83-86.

    ZHANG Zhiqiang, GUAN Baoshu, WENG Hanmin. Basic analysis of rock bursting occurrence condition[J]. Journal of the China Railway Society, 1998,20(4): 83-86.
  • Relative Articles

    [1]LUO Xun, YANG Jie, TIAN Hongtao, LIU Dagang, WANG Xiaoyong. Characteristics and Calculation Method of Impact Load in Rockburst Tunnel[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1095-1103. doi: 10.3969/j.issn.0258-2724.20220373
    [2]WEN Ming. Analytical Solution of Mechanical Response inShallow Non-circular Tunnels[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 202-209. doi: 10.3969/j.issn.0258-2724.20210002
    [3]MENG Wei, HE Chuan, WU Fangyin, CHEN Ziquan, ZHOU Zihan, KOU Hao. Effects of Thermal Stress of Rock Masses Generated by Geothermal Gradient on Rockburst Prediction[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 903-909. doi: 10.3969/j.issn.0258-2724.20200737
    [4]GENG Ping, WANG Qi, GUO Xiangyu, HE Chuan, LU Shujun, XIAO Mingqing. Force Characteristics of Longitudinal Joints of Shield Tunnel under Seismic Action[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 704-712. doi: 10.3969/j.issn.0258-2724.20180634
    [5]SHANG Yonghui, XU Linrong, LIU Weizheng, CHEN Zhaofeng. Engineering Characteristics and Road Performance of Cement-Stabilized Expansive Soil for Heavy Haul Railways[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1044-1051. doi: 10.3969/j.issn.0258-2724.20180871
    [6]YAN Jian, HE Chuan, WANG Bo, MENG Wei, YANG Junfeng. Prediction of Rock Bursts for Sangzhuling Tunnel Located on Lhasa-Nyingchi Railway Under Coupled Thermo-Mechanical Effects[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 434-441. doi: 10.3969/j.issn.0258-2724.2018.03.002
    [7]LUO Jianjun. Tunnel Entrance Field Characteristics Induced by High Speed Train with Crosswind at Entrance[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 746-754. doi: 10.3969/j.issn.0258-2724.2017.04.013
    [8]MENG Guowang, ZHOU Jiamei, GAO Bo. Limit State Design Method of Railway Tunnel Portal Based on Reliability Theory[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 30-35,49. doi: 10.3969/j.issn.0258-2724.2016.01.005
    [9]JIANG Zezhong. Experiment Study on Engineering Property Indexes of Expansive Soil for Railway Subgrade and Its Improvement Measures[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 839-844,850. doi: 10.3969/j.issn.0258-2724.2013.05.009
    [10]HU Lan, HU Pei. Relation and Risk in Owner and Contractors of Tunnel Projects Based on Probability and Logic Theories[J]. Journal of Southwest Jiaotong University, 2013, 26(6): 1122-1128. doi: 10.3969/j.issn.0258-2724.2013.06.024
    [11]GENG Ping, CAO Dongjie, TANG Jinliang, QUAN Qianlong, CHENG Bangfu. Rational Seismic Protective Length for Portal of Railway Tunnel[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 942-948,954. doi: 10.3969/j.issn.0258-2724.2012.06.006
    [12]WU Guang, XIAO Dao-Tan, JIANG Liang-Wen, QU Ke. Problems about Engineering Geology of High-Grade Railway Route Selection in Complicated Mountainous Areas[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 527-532. doi: 10. 3969/ j. issn. 0258-2724.
    [13]XIAO Qinghua, ZHANG Jichun, XIA Zhenrong. Calculation of Tunnel Blasting Parameters Based on Prior Knowledge and BP Neural Network[J]. Journal of Southwest Jiaotong University, 2007, 20(5): 537-541.
    [14]CHENG Gang, QIUWen-ge, GAOXin-qiang. Experimental Research on Bamboo-Truncating Tunnel Portal for Single-Track Railway[J]. Journal of Southwest Jiaotong University, 2004, 17(2): 152-156.
    [15]LIUHai-yan, LI Zong-ping, DU Wen. A Prediction Model of Demand for Passenger Ticket Booking on Railways[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 535-538.
  • Cited by

    Periodical cited type(13)

    1. 周航,张广泽,赵晓彦,陈明浩,陈仕阔,喻炳鑫. 深部极高地应力花岗岩隧道岩爆破坏特征及成因机理研究. 工程地质学报. 2024(03): 1098-1111 .
    2. 张强,申超飞,李永超,常峰. 基于WOA-LSTM和微震监测的岩爆等级预测模型. 安徽理工大学学报(自然科学版). 2024(04): 50-59 .
    3. 张成友,汪波,杜泽昊,高筠涵,谭力豪. 不同锚杆支护体系防岩爆适宜性分析与锚杆参数优化研究. 现代隧道技术. 2024(06): 64-73 .
    4. 高梅,张成良,张华超,吴泽鑫. 基于SMOTEENN-CGAN-Stacking的岩爆烈度等级预测研究. 工程地质学报. 2024(06): 2264-2276 .
    5. 李鲒,傅鹤林,李国良,陈敬军. 基于能量考虑危害性与可能性的岩爆评价指标. 华中科技大学学报(自然科学版). 2023(10): 126-133 .
    6. 洪富义,李旭哲,王子,陈诺,梁斌,李文杰. 大凉山地区深埋高地应力公路隧道岩爆机理及防治对策. 科学技术与工程. 2023(29): 12697-12704 .
    7. 赵阳,杨维彬,汪波,吕卫蒙,严健,刘柯良. 大岗山深埋硬岩公路隧道岩爆预测. 科学技术与工程. 2023(34): 14824-14831 .
    8. 陈仕阔,周航,廖昕,陈兴强,赵晓彦,王志民. 川藏铁路高地应力隧道减灾选线. 地球科学. 2022(03): 803-817 .
    9. 张重远,杜世回,何满潮,秦向辉,李彬,陈兴强,陈群策,孟文,黄勇. 喜马拉雅东构造结西缘地应力特征及其对隧道围岩稳定性的影响. 岩石力学与工程学报. 2022(05): 954-968 .
    10. 周航,廖昕,陈仕阔,冯涛,王志民. 基于组合赋权和未确知测度的深埋隧道岩爆危险性评价——以川藏交通廊道桑珠岭隧道为例. 地球科学. 2022(06): 2130-2148 .
    11. 宫凤强,代金豪,王明洋,黄书岭,徐磊. 高地应力“强度&应力”耦合判据及其分级标准. 工程地质学报. 2022(06): 1893-1913 .
    12. 滕杰,吴彤,尚彦军,邵鹏,闫晓石,荆理. 从花岗岩爆坑方位和级别反演区域水平主应力方向和大小——以北天山某TBM施工隧道为例. 新疆地质. 2022(04): 522-527 .
    13. 孙飞跃,范俊奇,郭佳奇,石晓燕,刘希亮,朱斌忠,张恒源. 基于能量原理的岩爆倾向性判据. 高压物理学报. 2021(03): 158-172 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-07051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 39.9 %FULLTEXT: 39.9 %META: 55.2 %META: 55.2 %PDF: 5.0 %PDF: 5.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.5 %其他: 9.5 %其他: 0.1 %其他: 0.1 %China: 0.1 %China: 0.1 %Faisalabad: 0.9 %Faisalabad: 0.9 %Falkenstein: 0.3 %Falkenstein: 0.3 %Seattle: 0.1 %Seattle: 0.1 %[]: 0.1 %[]: 0.1 %上海: 0.3 %上海: 0.3 %东莞: 0.3 %东莞: 0.3 %临汾: 0.3 %临汾: 0.3 %保定: 0.1 %保定: 0.1 %六安: 0.1 %六安: 0.1 %北京: 3.5 %北京: 3.5 %十堰: 0.3 %十堰: 0.3 %南京: 0.3 %南京: 0.3 %台北: 0.1 %台北: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %天津: 0.4 %天津: 0.4 %宁波: 0.3 %宁波: 0.3 %宣城: 0.3 %宣城: 0.3 %广州: 0.1 %广州: 0.1 %延安: 0.1 %延安: 0.1 %张家口: 2.3 %张家口: 2.3 %成都: 4.8 %成都: 4.8 %扬州: 0.3 %扬州: 0.3 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.3 %杭州: 0.3 %林芝: 0.1 %林芝: 0.1 %池州: 0.3 %池州: 0.3 %洛阳: 0.1 %洛阳: 0.1 %淮南: 0.6 %淮南: 0.6 %淮安: 0.3 %淮安: 0.3 %湖州: 0.1 %湖州: 0.1 %漯河: 1.3 %漯河: 1.3 %潍坊: 0.1 %潍坊: 0.1 %石家庄: 2.7 %石家庄: 2.7 %秦皇岛: 0.1 %秦皇岛: 0.1 %聊城: 0.1 %聊城: 0.1 %自贡: 0.1 %自贡: 0.1 %芒廷维尤: 21.7 %芒廷维尤: 21.7 %芝加哥: 1.1 %芝加哥: 1.1 %衡水: 0.1 %衡水: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 40.3 %西宁: 40.3 %西安: 0.9 %西安: 0.9 %赣州: 0.4 %赣州: 0.4 %达拉斯: 0.3 %达拉斯: 0.3 %运城: 1.1 %运城: 1.1 %郑州: 0.3 %郑州: 0.3 %重庆: 0.4 %重庆: 0.4 %长沙: 0.3 %长沙: 0.3 %青岛: 0.1 %青岛: 0.1 %香港: 0.3 %香港: 0.3 %马德里: 0.1 %马德里: 0.1 %黄山: 0.3 %黄山: 0.3 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ChinaFaisalabadFalkensteinSeattle[]上海东莞临汾保定六安北京十堰南京台北哈尔滨天津宁波宣城广州延安张家口成都扬州朝阳杭州林芝池州洛阳淮南淮安湖州漯河潍坊石家庄秦皇岛聊城自贡芒廷维尤芝加哥衡水襄阳西宁西安赣州达拉斯运城郑州重庆长沙青岛香港马德里黄山齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article views(646) PDF downloads(34) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return