• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 20 Issue 5
Oct.  2007
Turn off MathJax
Article Contents
XIAO Qinghua, ZHANG Jichun, XIA Zhenrong. Calculation of Tunnel Blasting Parameters Based on Prior Knowledge and BP Neural Network[J]. Journal of Southwest Jiaotong University, 2007, 20(5): 537-541.
Citation: XIAO Qinghua, ZHANG Jichun, XIA Zhenrong. Calculation of Tunnel Blasting Parameters Based on Prior Knowledge and BP Neural Network[J]. Journal of Southwest Jiaotong University, 2007, 20(5): 537-541.

Calculation of Tunnel Blasting Parameters Based on Prior Knowledge and BP Neural Network

  • Received Date: 23 Oct 2006
  • Publish Date: 25 Oct 2007
  • To overcome the shortcoming of the parameter design of tunnel blasting,i.e.,they are selected empirically by designers,a three-layer neural network model with an input layer,an output layer and a hidden layer was constructed.The Protodikonov’s hardness coefficient,tunnel cross-section area,practical advance per round,blast-hole diameter and others are considered as the input parameters of a BP network,and the designed advance per round,powder factor,contour hole spacing,reliever-hole spacing and excavated-hole spacing as the output parameters.A algorithm for the neural network model was given,and the restrain conditions of network study were proposed on the basis of blasting prior knowledge,so solving of the model can be accelerated.The calculating results for a practical example of tunnel blasting design show that with the help of the neural network model and the algorithm,the parameters of tunnel blasting may be calculated accurately and quickly by using the existed blasting data,so an optimal blasting effect can be obtained.

     

  • loading
  • OUCHTERLONY F.Some recent research and developments in Swedish tunnel blasting[J].Explosion and Explosives,1992,53(4):165-180.[2] SINGH S P.New trends in drilling and blasting technology[J].International Journal of Surface Mining,2000,14 (4):305-315.[3] WHITE T J,FARNFIELD R A.Computers and blasting[J].Transactions of the Institution of Mining Metallurgy,Section A:Mining Industry,1993,102:A19-A24.[4] HENDLER J,TATE A,DRUMMOND M.AI (artificial intelligence) planning systems and techniques[J].AI (Artificial Intelligence) Magazine,1990,11(2):61-77.[5] JONG Y H,LEE C I.Influence of geological conditions on the powder factor for tunnel blasting[J].International Journal of Rock Mechanics and Mining Sciences,2004,42(Sup.1):1-7.[6] JONG Y H,LEE C I.Application of neural networks to prediction of powder factor and peak particle velocity in tunnel blasting[C]//Proceedings of the Annual Conference on Explosives and Blasting Technique(Ⅱ).Las Vegas:International Society of Explosives Engineers,2002:67-76.[7] LEU Sousen,LIN S F,CHEN C K,et al.Analysis of powder factors for tunnel blasting using neural networks[J].International Journal for Blasting and Fragmentation,1998,2(4):433-448.[8] LI Xiaohong,WANG Xinfei,DONG Yongkang,et al.An expert system based on BP neural networks for pre-splitting blasting design[C]//Lecture Notes in Computer Science.Heidelberg:Springer Verlag Heidelberg,2006:1 237-1 241.[9] 靳番.神经计算智能基础原理·方法[M].成都:西南交通大学出版社,2000:123-136.[10] 张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993:36-49.[11] 张继春,蔡德所,胡铁松.基于神经网络理论的岩体爆破效应预测[J].东北大学学报,1995,16(增刊):101-106.ZHANG Jichun,CAI Desuo,HU Tiesong.Rock blasting effect forecast based on neural network theory[J].Journal of Northeast University,1995,16 (Sup.):101-106.[12] 张继春.三峡工程基岩爆破振动特性的试验研究[J].爆炸与冲击,2001,21(2):131-137.ZHANG Jichun.Vibration characteristics of blasting in bed rock mass at Sanxia project[J].Explosion and Shock Waves,2001,21(2):131-137.[13] 齐景嶽,刘正雄,张儒林,等.隧道爆破现代技术[M].北京:中国铁道出版社,1999:255-264.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1725) PDF downloads(363) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return