• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
TONG Guojun, LIU Yongshou, WANG Yingchao. Thermo-Elastic Vibration Analysis of Functionally Graded Material Pipes in Elastic Matrix[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 502-508. doi: 10.3969/j.issn.0258-2724.20180287
Citation: WEN Ming. Analytical Solution of Mechanical Response inShallow Non-circular Tunnels[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 202-209. doi: 10.3969/j.issn.0258-2724.20210002

Analytical Solution of Mechanical Response inShallow Non-circular Tunnels

doi: 10.3969/j.issn.0258-2724.20210002
Funds:  Supported by the National key R&D Program of China(2017YFC0805401);National Natural Science Foundation of China(51738002)
  • Received Date: 05 Jan 2021
  • Rev Recd Date: 16 Apr 2021
  • Available Online: 23 Sep 2022
  • Publish Date: 22 Apr 2021
  • The mechanical analysis of shallow noncircular tunnels is of great significance to the construction safety of urban subway tunnels. The difficulty in solving this problem originates from the influence of gravity and the determination of conformal mapping. To this end, a decoupling conformal mapping method with the framework of complex variable theory was proposed. In this method, the analytic function was decomposed into two groups of sub-functions, which were expressed in different local coordinate systems. These two sub-functions can exactly express the mechanical field of the computational domains inside the ground surface and outside the tunnel boundary. Then the ground and tunnel boundaries can be mapped independently by conformal transformation. Furthermore, the boundary condition equation used to determine the analytic function was transformed into the frequency equation using the fast Fourier transform method. Finally, the proposed method is applied to the analysis of ground settlement caused by the shallow tunnel excavation. From the results, the following conclusions can be drawn: 1) The tunnel shape has a significant effect on the ground settlement, and its main factor is the height-to-span ratio. 2) The buried depth affects both the ground settlement and the width of the settlement trough. Its sensitivity increases with the decrease of buried depth. 3) The lateral pressure coefficient has little effect on the width of the ground settlement trough. 4) Compared with the finite element method, the proposed method can obtain high-precision results at a small computational cost.

     

  • [1]
    张子新,朱叶艇,朱雁飞,等. 1∶1站立式大断面异形盾构管片力学试验系统的研发与应用[J]. 岩石力学与工程学报,2017,36(12): 2895-2905.

    ZHANG Zixin, ZHU Yeting, ZHU Yanfei, et al. Development and application of a 1∶1 mechanical test system for special-shaped shield lining with a large cross-section[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2895-2905.
    [2]
    方黄城,张顶立,文明,等. 任意多孔条件下围岩力学分析的非迭代解析方法[J]. 岩石力学与工程学报,2020,39(11): 2204-2212.

    FANG Huangcheng, ZHANG Dingli, WEN Ming, et al. A non-iterative analytical method for mechanical analysis of surrounding rock with arbitrary shape holes[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2204-2212.
    [3]
    VERRUIJT A. A complex variable solution for a deforming circular tunnel in an elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(2): 77-89. doi: 10.1002/(SICI)1096-9853(199702)21:2<77::AID-NAG857>3.0.CO;2-M
    [4]
    晏莉,阳军生,刘宝琛. 浅埋双孔平行隧道开挖围岩应力和位移分析[J]. 岩土工程学报,2011,33(3): 413-419.

    YAN Li, YANG Junsheng, LIU Baochen. Stress and displacement of surrounding rock with shallow twin-parallel tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 413-419.
    [5]
    韩凯航,张成平,王梦恕. 浅埋隧道围岩应力及位移的显式解析解[J]. 岩土工程学报,2014,36(12): 2253-2259. doi: 10.11779/CJGE201412013

    HAN Kaihang, ZHANG Chengping, WANG Mengshu. Explicit analytical solutions for stress and displacement of surrounding rock in shallow tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2253-2259. doi: 10.11779/CJGE201412013
    [6]
    张治国,张成平,奚晓广. 双线隧道不同布置方式下相互作用影响的地层位移解析[J]. 岩土工程学报,2019,41(2): 262-271.

    ZHANG Zhiguo, ZHANG Chengping, XI Xiaoguang. Closed solutions to soil displacements induced by twin-tunnel excavation under different layout patterns[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 262-271.
    [7]
    曾癸森,吕爱钟. 考虑构造应力作用下浅埋圆形隧洞的解析解[J]. 岩土力学,2017,38(增1): 79-86. doi: 10.16285/j.rsm.2017.S1.009

    ZENG Guisen, LÜ Aizhong. Analytical solution for shallow circular tunnel under action of tectonic stress[J]. Rock and Soil Mechanics, 2017, 38(S1): 79-86. doi: 10.16285/j.rsm.2017.S1.009
    [8]
    ZHANG Z G, ZHANG M X, JIANG Y J, et al. Analytical prediction for ground movements and liner internal forces induced by shallow tunnels considering non-uniform convergence pattern and ground-liner interaction mechanism[J]. Soils and Foundations, 2017, 57(2): 211-226. doi: 10.1016/j.sandf.2017.03.004
    [9]
    ZENG G S, CAI H, LU A Z. An analytical solution for an arbitrary cavity in an elastic half-plane[J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4509-4526. doi: 10.1007/s00603-019-01844-2
    [10]
    李新源,刘国彬. 半无限体任意开挖断面外域到同心圆环域共形映射的计算方法[J]. 岩石力学与工程学报,2018,37(增1): 3507-3514. doi: 10.13722/j.cnki.jrme.2017.0180

    LI Xinyuan, LIU Guobin. Calculating method for conformal mapping from exterior of cavern with arbitrary excavation cross-section in half-plane to the area between two concentric circles[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3507-3514. doi: 10.13722/j.cnki.jrme.2017.0180
    [11]
    MUSKHELISHVILI N I. Some basic problems of the mathematical theory of elasticity[M]. Noordhoff Groningen: Springer, 1963: 5-20.
    [12]
    陈子荫. 围岩力学分析中的解析方法[M]. 北京: 煤炭工业出版社, 1994: 89-105.
    [13]
    吕爱钟, 张路青. 地下隧洞力学分析的复变函数方法[M]. 北京: 科学出版社, 2007: 128-129.
  • Relative Articles

    [1]ZHANG Yue, XU Yuanping, ZHOU Jin, ZHOU Yang. Vibration and Stability Evaluation of Magnetically Suspended Fluid Machinery Based on API617[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240340
    [2]ZHOU Yang, ZHOU Jin, WANG Yiyu, ZHANG Yue, XU Yuanping. Modeling and Robust Control of Magnetic Bearing-Rotor System Considering Interface Contact[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 755-765. doi: 10.3969/j.issn.0258-2724.20230510
    [3]JIN Junjie, WANG Yanfeng, XU Chengcheng, LU Wenxuan, ZHANG Xiaoyou, SUN Feng, XU Fangchao. Design and Magnetic Force Characteristic Analysis of Magnetic Levitation Bearing for Artificial Kidney Pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090
    [4]JIN Chaowu, XIN Yu, ZHOU Yang, ZHAO Ruijin, ZHOU Jin, XU Yuanping. Modeling and Dynamics Analysis of High-Temperature Magnetic Bearing-Rotor System[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 746-754, 822. doi: 10.3969/j.issn.0258-2724.20230667
    [5]WEI Jingbo, LUO Hao, GUAN Zijin. Global Fast Terminal Sliding Mode Control for Maglev Ball System Based on Disturbance Observer[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 836-844. doi: 10.3969/j.issn.0258-2724.20210941
    [6]SUN Feng, PEI Wenzhe, JIN Junjie, ZHAO Chuan, XU Fangchao, ZHANG Ming. Floating Control Method for Permanent Magnetic Levitation Platform with Variable Flux Path[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 531-539. doi: 10.3969/j.issn.0258-2724.20210964
    [7]ZHONG Zhixian, CAI Zhonghou, QI Yanying. Model-Free Adaptive Control for Single-Degree-of-Freedom Magnetically Levitated System[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 549-557, 581. doi: 10.3969/j.issn.0258-2724.20210624
    [8]ZOU Shengnan, LIU Chang, DENG Shutong, LIU Ying, CHEN Pengrong. Decoupling and Control Stability Analysis Based on Hybrid Repulsion Maglev Platform[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 540-548. doi: 10.3969/j.issn.0258-2724.20210750
    [9]HU Yusheng, LI Liyi, GUO Weilin, LI Xin. Support Stiffness of Magnetic Bearing Based on Unequal Magnetic Circuit Area Design Method[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 648-656. doi: 10.3969/j.issn.0258-2724.20210888
    [10]GUAN Xudong, ZHOU Jin, JIN Chaowu, YAO Runhui. Misalignment Vibration Detection of Magnetic Suspension Multi-Span Rotors Based on SOGI-FLL-WPF[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 665-674. doi: 10.3969/j.issn.0258-2724.20210810
    [11]JIANG Qilong, LIANG Da, YAN Feng. Application of Digital One-Cycle Control for Current in Electromagnetic Suspension System[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 1-8, 22. doi: 10.3969/j.issn.0258-2724.20170771
    [12]HU Guangdi, WANG Guohui, LUO Huiyu, ZHOU Ke, LANG Xiaoyue. Robust Control of the Air Conditioning System of an Electric Vehicle with Actuator Fault[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 351-358. doi: 10.3969/j.issn.0258-2724.2018.02.018
    [13]GUO Yuanbo, ZHANG Xiaohua, CHEN Hongjun. Nonlinear Control of PWM Rectifier Based on Bilinear System Theory[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 232-237.
    [14]WANG Tao, XIAO Jian, YAN Shu. Feedback Linearization and Decoupling Control of Induction Motors[J]. Journal of Southwest Jiaotong University, 2007, 20(2): 181-185.
    [15]WANG Li, ZHANGKun-lun. HybridM agnetic Suspension System Based on Zero Power Control Strategy[J]. Journal of Southwest Jiaotong University, 2005, 18(5): 667-672.
    [16]FU Long-hai, LI Meng. Variable-Air-Volume Air-Conditioning System Based on PID-ANN Decoupling Control Technology[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 13-17.
    [17]GUOXiao-zhou, WANG Ying, WANG Shi-xiong. Location and Speed Detection System for High-Speed Maglev Vehicle[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 455-459.
    [18]DING Wang-cai. Hopf Bifurcation of Flywheel Governor with Feedback Control Device[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 624-628.
    [19]ZHANGCui一fang, HUANGHai一yu, DENGChang一yan. AnoverallSehemeforHighTemPeratureSuPercondueting MaglevMeasurementSystem 一DataAequisitionandMotionControl[J]. Journal of Southwest Jiaotong University, 2001, 14(4): 440-443.
  • Cited by

    Periodical cited type(2)

    1. 程柳峰,陈亮亮,靳晓光,伍家驹,郭至城,李志农. 基于多维可视化的电磁轴承-柔性转子系统多目标优化控制. 振动与冲击. 2025(04): 40-51+117 .
    2. 巩磊,何派,石勇,祝长生. 主动磁悬浮轴承有限元模型转子位置反步法控制. 陕西科技大学学报. 2024(06): 157-164 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.9 %FULLTEXT: 19.9 %META: 73.0 %META: 73.0 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.7 %其他: 7.7 %China: 0.4 %China: 0.4 %United States: 0.1 %United States: 0.1 %万隆: 0.1 %万隆: 0.1 %上海: 0.7 %上海: 0.7 %东莞: 1.0 %东莞: 1.0 %临汾: 0.7 %临汾: 0.7 %兰州: 0.1 %兰州: 0.1 %北京: 10.0 %北京: 10.0 %十堰: 0.4 %十堰: 0.4 %南京: 0.6 %南京: 0.6 %南充: 0.4 %南充: 0.4 %南昌: 0.4 %南昌: 0.4 %南通: 0.4 %南通: 0.4 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.7 %呼和浩特: 0.7 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.6 %嘉兴: 0.6 %夏延: 0.1 %夏延: 0.1 %大庆: 0.4 %大庆: 0.4 %天津: 1.9 %天津: 1.9 %太原: 0.6 %太原: 0.6 %宣城: 0.4 %宣城: 0.4 %宿州: 0.1 %宿州: 0.1 %常州: 0.3 %常州: 0.3 %常德: 0.3 %常德: 0.3 %广州: 1.2 %广州: 1.2 %张家口: 8.0 %张家口: 8.0 %成都: 1.1 %成都: 1.1 %扬州: 1.0 %扬州: 1.0 %昆明: 0.8 %昆明: 0.8 %晋中: 0.1 %晋中: 0.1 %曼谷: 0.1 %曼谷: 0.1 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.6 %杭州: 0.6 %柳州: 0.1 %柳州: 0.1 %武汉: 3.3 %武汉: 3.3 %池州: 0.6 %池州: 0.6 %沈阳: 1.4 %沈阳: 1.4 %洛阳: 0.4 %洛阳: 0.4 %济南: 0.3 %济南: 0.3 %济宁: 0.1 %济宁: 0.1 %深圳: 1.2 %深圳: 1.2 %温州: 0.3 %温州: 0.3 %湖州: 0.1 %湖州: 0.1 %漯河: 3.3 %漯河: 3.3 %烟台: 0.1 %烟台: 0.1 %石家庄: 1.2 %石家庄: 1.2 %胡志明: 0.1 %胡志明: 0.1 %芒廷维尤: 8.2 %芒廷维尤: 8.2 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.6 %苏州: 0.6 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 26.6 %西宁: 26.6 %西安: 0.4 %西安: 0.4 %诺沃克: 0.6 %诺沃克: 0.6 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.1 %达州: 0.1 %运城: 1.2 %运城: 1.2 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 3.9 %长沙: 3.9 %青岛: 0.6 %青岛: 0.6 %鞍山: 0.1 %鞍山: 0.1 %其他ChinaUnited States万隆上海东莞临汾兰州北京十堰南京南充南昌南通合肥呼和浩特哈尔滨哥伦布嘉兴夏延大庆天津太原宣城宿州常州常德广州张家口成都扬州昆明晋中曼谷朝阳杭州柳州武汉池州沈阳洛阳济南济宁深圳温州湖州漯河烟台石家庄胡志明芒廷维尤芝加哥苏州葫芦岛衡阳西宁西安诺沃克贵阳达州运城邯郸郑州重庆长春长沙青岛鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(522) PDF downloads(50) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return