• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
YAN Jian, HE Chuan, WANG Bo, MENG Wei, YANG Junfeng. Prediction of Rock Bursts for Sangzhuling Tunnel Located on Lhasa-Nyingchi Railway Under Coupled Thermo-Mechanical Effects[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 434-441. doi: 10.3969/j.issn.0258-2724.2018.03.002
Citation: YAN Jian, HE Chuan, WANG Bo, MENG Wei, YANG Junfeng. Prediction of Rock Bursts for Sangzhuling Tunnel Located on Lhasa-Nyingchi Railway Under Coupled Thermo-Mechanical Effects[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 434-441. doi: 10.3969/j.issn.0258-2724.2018.03.002

Prediction of Rock Bursts for Sangzhuling Tunnel Located on Lhasa-Nyingchi Railway Under Coupled Thermo-Mechanical Effects

doi: 10.3969/j.issn.0258-2724.2018.03.002
  • Received Date: 24 Nov 2017
  • Publish Date: 01 Jun 2018
  • Coupled thermo-mechanical effects on the prediction of rock bursts for tunnels with special geostress and high geotemperatures is a new problem that needs to be solved. During the excavation of the newly built Sangzhuling tunnel in the Lhasa-Nyingchi railway project, the geotemperature at different buried depths was obtained by field temperature test data inversion. The gradually changing hole stress during the excavation process was clarified by coupled thermo-mechanical numerical simulation. The range and intensity of rock bursts throughout the entire calculation scope of a typical section under various stress-relieving coefficients and geotemperature conditions, combined with different of rock burst criteria, such as Russense, TAO Zhenyu, WANG Yuanhan, and FAN Jianping criteria, were predicted. Finally, the prediction results were compared with the field measurements. The results show that the geothermal gradient of Sangzhuling tunnel is 5.5℃/100 m. As the buried depth of the tunnel increases, so does the geotemperature. The maximum compressive stress is concentrated in the vault and the arch springing in the deep-buried tunnel section with the gravity stress field. At 45-85℃, the maximum tangential and principal stresses increase linearly with an increase in the stress-relieving coefficient, and the maximum tangential and principal stresses increase by 84-96 MPa and 93-96 MPa, respectively, when the stress-relieving coefficient reaches 100%; the intensity of rock bursts will increase under these conditions. The analysis using the four methods for predicting rock bursts compared with rock burst data from results in field tests shows that the occurrence of rock bursts will be accelerated during stress release by coupled thermo-mechanical effects. The prediction of middle level and greater intensity rock bursts using the TAO Zhenyu criterion shows great sensitivity for the earlier stages of stress release. In the mid-late periods of stress release, the rock bursts prediction results using the WANG Yuanhan criterion are in accordance with the measured results.

     

  • loading
  • KAISER P K, CAI Ming. Design of rock support system under rockburst condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 4(3):215-227. http://d.wanfangdata.com.cn/Periodical_yslxyytgcxb-e201203003.aspx
    汪波, 何川, 吴德兴.深埋特长隧道岩爆预测研究[J].铁道工程学报, 2009, 26(11):45-49. doi: 10.3969/j.issn.1006-2106.2009.11.011

    WANG Bo, HE Chuan, WU Dexin. Research on the prediction of rock burst for deep-burying long tunnel[J]. Journal of Railway Engineering Society, 2009, 26(11):45-49. doi: 10.3969/j.issn.1006-2106.2009.11.011
    ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts[J]. Tunnelling and Underground Space Technology, 1994, 9(1):59-65. doi: 10.1016/0886-7798(94)90010-8
    冯夏庭, 陈炳瑞, 明华军, 等.深埋隧洞岩爆孕育规律与机制:即时型岩爆[J].岩石力学与工程学报, 2012, 31(3):561-569. doi: 10.3969/j.issn.1000-6915.2012.03.014

    FENG Xiating, CHEN Bingrui, MING Huajun, et al. Evolution law and mechanism of rockburst in deep tunnel:immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3):561-569. doi: 10.3969/j.issn.1000-6915.2012.03.014
    许锡昌, 刘泉声.高温下花岗岩基本力学性能初步研究[J].岩土工程学报, 2000, 22(3):332-335. doi: 10.3321/j.issn:1000-4548.2000.03.014

    XU Xichang, LIU Quansheng. A preliminary study on basic mechanical properties for granite at high temperature[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3):332-335. doi: 10.3321/j.issn:1000-4548.2000.03.014
    DWIVEDI R D, GOEL R K, PRASAD V R. Thermomechanical properties of Indian and other granites[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3):303-315. doi: 10.1016/j.ijrmms.2007.05.008
    刘泉声, 许锡昌.温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报, 2000, 19(4):408-411. doi: 10.3321/j.issn:1000-6915.2000.04.002

    LIU Quansheng, XU Xichang. The analysis of damage of brittle rock under temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4):408-411. doi: 10.3321/j.issn:1000-6915.2000.04.002
    陈国庆, 李天斌, 张岩, 等.花岗岩隧道脆性破坏的温度效应研究[J].岩土力学, 2013, 34(12):3513-3519. http://d.old.wanfangdata.com.cn/Periodical/ytlx201312026

    CHEN Guoqing, LI Tianbin, ZHANG Yan, et al. Thermal effect of brittle failure for granite tunnel[J]. Rock and Soil Mechanics, 2013, 34(12):3513-3519. http://d.old.wanfangdata.com.cn/Periodical/ytlx201312026
    左建平, 谢和平, 周宏伟.温度压力耦合作用下的岩石屈服破坏研究[J].岩石力学与工程学报, 2005, 24(16):2917-2921. doi: 10.3321/j.issn:1000-6915.2005.16.018

    ZUO Jianping, XIE Heping, ZHOU Hongwei. Study on failure behavior of rock under coupling effects of temperature and confining pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16):2917-2921. doi: 10.3321/j.issn:1000-6915.2005.16.018
    李天斌, 高美奔, 陈国庆.硬脆性岩石热-力-损伤本构模型及其初步运用[J].岩土工程学报, 2017, 39(8):1477-1484. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201708019

    LI Tianbin, GAO Meiben, CHEN Guoqing. A thermal damage constitutive model for hard brittle rocks and its preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 39(8):1477-1484. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201708019
    刘文岗, 王驹, 周宏伟.高放废物处置库花岗岩热-力耦合模拟研究[J].岩石力学与工程学报, 2009, 28(增刊1):2875-2883. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2009z1043

    LIU Wengang, WANG Ju, ZHOU Hongwei. Coupled thermo-mechanical analysis of granite for high-level radioactive waste repository[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup.1):2875-2883. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2009z1043
    阴红宇.热-力耦合作用下硬岩力学行为及岩爆发生机制研究[D].成都: 成都理工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10616-1015312899.htm
    WANNE T S, YOUNG R P. Bonded-particle modeling of thermally fractured granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5):789-799. doi: 10.1016/j.ijrmms.2007.09.004
    张国云.岩爆与地热问题调研报告[R].北京: 铁道部隧道工程局科研所, 2000.
    郤保平, 赵阳升.高温高压下花岗岩中钻孔围岩的热物理及力学特性试验研究[J].岩石力学与工程学报, 2010, 29(6):1245-1253. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201006021

    XI Baoping, ZHAO Yangsheng. Experimental study of thermo-physico-mechanical property of drilling surrounding rock in granite under high temperature and high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6):1245-1253. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201006021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article views(540) PDF downloads(153) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return