• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
CHEN Chenghua, HUANG Zhichao, HUANG Junjie, YANG Chen. Mechanical Property and Frost Resistance Analysis of Foamed Lightweight Soil with Fiber Filament and Mesh Reinforcement[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 462-469. doi: 10.3969/j.issn.0258-2724.20210160
Citation: CHEN Chenghua, HUANG Zhichao, HUANG Junjie, YANG Chen. Mechanical Property and Frost Resistance Analysis of Foamed Lightweight Soil with Fiber Filament and Mesh Reinforcement[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 462-469. doi: 10.3969/j.issn.0258-2724.20210160

Mechanical Property and Frost Resistance Analysis of Foamed Lightweight Soil with Fiber Filament and Mesh Reinforcement

doi: 10.3969/j.issn.0258-2724.20210160
  • Received Date: 02 Mar 2021
  • Rev Recd Date: 25 Jun 2021
  • Available Online: 29 Nov 2022
  • Publish Date: 06 Jul 2021
  • In order to analyze the influence of the short fiber filaments and fiber mesh reinforcement on the mechanical property and frost resistance of foamed lightweight soil, a series of tests including unconfined compression tests, flexural strength tests, dynamic triaxial tests, and freeze-thaw cycle tests were performed. The results showed that to improve the compressive strength of the foamed lightweight soil, the optimal length and content of the short glass fiber mixed into the foamed lightweight soil with a design wet density of 700 kg/m3 are 6 mm and 0.4%, respectively. After the foamed lightweight soil with the designed wet density ranging from 400 to 1 000 kg/m3 was reinforced using short glass fibers with length of 6 mm and content of 0.6%, their compressive strength, flexural strength, and dynamic stress threshold were significantly improved, with the minimum increases being 35.3%, 31.4% and 53.4%, respectively. When the foamed lightweight soil had been reinforced with short glass fibers with length of 6 mm and content of 0.6%, the freezing-thawing durability of the foamed lightweight soil with design wet densities of 400, 700 and 1 000 kg/m3 increased from 5 cycles to 10 cycles, 25 cycles to 50 cycles, and 125 cycles to more than 150 cycles, respectively. This indicates that the frost resistance of the foamed lightweight soil was significantly improved. To improve the flexural strength of the foamed lightweight soil, the effect of the reinforcement by the glass fiber mesh combined with short fiber filaments (0.4% in weight) was the best, the effect of the single glass fiber mesh reinforcement was the second, and the effect of the single glass fiber filament reinforcement was the worst. Additionally, the toughness of the foamed lightweight soil can be improved significantly by short glass fiber filament reinforcement, glass fiber mesh reinforcement, or glass fiber mesh combined with short glass fiber filament reinforcement.

     

  • loading
  • [1]
    RAMAMURTHY K, KUNHANANDAN NAMBIAR E K, RANJANI G I S. A classification of studies on properties of foam concrete[J]. Cement and Concrete Composites, 2009, 31(6): 388-396. doi: 10.1016/j.cemconcomp.2009.04.006
    [2]
    RAJ A, SATHYAN D, MINI K M. Physical and functional characteristics of foam concrete: a review[J]. Construction and Building Materials, 2019, 221: 787-799. doi: 10.1016/j.conbuildmat.2019.06.052
    [3]
    AMRAN Y H M, FARZADNIA N, ABANG ALI A A. Properties and applications of foamed concrete; a review[J]. Construction and Building Materials, 2015, 101: 990-1005. doi: 10.1016/j.conbuildmat.2015.10.112
    [4]
    MINDESS S. Developments in the formulation and reinforcement of concrete[M]. Wood head Publishing and Maney Publishing, Institute of Materials. Washington D. C.: Minerals & Mining CRC Press, 2014.
    [5]
    YOUSSEF M B, LAVERGNE F, SAB K, et al. Upscaling the elastic stiffness of foam concrete as a three-phase composite material[J]. Cement and Concrete Research, 2018, 110: 13-23. doi: 10.1016/j.cemconres.2018.04.021
    [6]
    SHE W, DU Y, ZHAO G T, et al. Influence of coarse fly ash on the performance of foam concrete and its application in high-speed railway roadbeds[J]. Construction and Building Materials, 2018, 170: 153-166. doi: 10.1016/j.conbuildmat.2018.02.207
    [7]
    HUANG J J, SU Q, ZHAO W H, et al. Experimental study on use of lightweight foam concrete as subgrade bed filler of ballastless track[J]. Construction and Building Materials, 2017, 149: 911-920. doi: 10.1016/j.conbuildmat.2017.04.122
    [8]
    SHI X N, HUANG J J, SU Q. Experimental and numerical analyses of lightweight foamed concrete as filler for widening embankment[J]. Construction and Building Materials, 2020, 250: 118897.1-118897.15.
    [9]
    中华人民共和国交通运输部. 公路路基设计规范: JTG D30—2015 [S]. 北京: 人民交通出版社股份有限公司, 2015.
    [10]
    李方贤,余其俊,罗云峰,等. 泡沫混凝土气孔结构数学表征及其分析[J]. 西南交通大学学报,2018,53(6): 1205-1210. doi: 10.3969/j.issn.0258-2724.2018.06.016

    LI Fangxian, YU Qijun, LUO Yunfeng, et al. Mathematical description and analysis on characteristics of pore structure for foam concrete[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1205-1210. doi: 10.3969/j.issn.0258-2724.2018.06.016
    [11]
    FALLIANO D, DE DOMENICO D, RICCIARDI G, et al. Experimental investigation on the compressive strength of foamed concrete: effect of curing conditions, cement type, foaming agent and dry density[J]. Construction and Building Materials, 2018, 165: 735-749. doi: 10.1016/j.conbuildmat.2017.12.241
    [12]
    苏谦,赵文辉,王亚威,等. 泡沫轻质混凝土力学特性试验研究[J]. 铁道建筑,2016,56(4): 144-148. doi: 10.3969/j.issn.1003-1995.2016.04.36

    SU Qian, ZHAO Wenhui, WANG Yawei, et al. Experimental research on mechanical properties of foam lightweight concrete[J]. Railway Engineering, 2016, 56(4): 144-148. doi: 10.3969/j.issn.1003-1995.2016.04.36
    [13]
    王亚威. 轻质混凝土耐久性及其提升技术试验研究[D]. 成都: 西南交通大学, 2017.
    [14]
    FALLIANO D, DE DOMENICO D, RICCIARDI G, et al. Compressive and flexural strength of fiber-reinforced foamed concrete: effect of fiber content, curing conditions and dry density[J]. Construction and Building Materials, 2019, 198: 479-493. doi: 10.1016/j.conbuildmat.2018.11.197
    [15]
    FALLIANO D, DE DOMENICO D, RICCIARDI G, et al. Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement: an experimental study[J]. Composite Structures, 2019, 209: 45-59. doi: 10.1016/j.compstruct.2018.10.092
    [16]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 蒸压加气混凝土性能试验方法: GB/T 11969—2020[S]. 北京: 中国标准出版社, 2020.
    [17]
    徐至钧. 纤维混凝土技术及应用[M]. 北京: 中国建筑工业出版社, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article views(359) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return