• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
HE Jingyuan, GAO Weihao, ZHANG Jian, WANG Chuan, LI Zhaofeng, YOU Hao. Freeze-Thaw Resistance of Red Mud-Based Stabilized Crushed Stone[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230350
Citation: HE Jingyuan, GAO Weihao, ZHANG Jian, WANG Chuan, LI Zhaofeng, YOU Hao. Freeze-Thaw Resistance of Red Mud-Based Stabilized Crushed Stone[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230350

Freeze-Thaw Resistance of Red Mud-Based Stabilized Crushed Stone

doi: 10.3969/j.issn.0258-2724.20230350
  • Received Date: 14 Jul 2023
  • Accepted Date: 20 Nov 2024
  • Rev Recd Date: 06 Jan 2024
  • Available Online: 07 Dec 2024
  • In order to achieve the safe application of red mud-based cementitious materials in road engineering, the mechanical properties and quality of red mud-based stabilized crushed stone base under freeze-thaw cycles were studied. The influence of freeze-thaw cycle temperature and number on mechanical properties and quality loss was explored by industrial CT scanning and SEM-EDS. Research has shown that when the temperature ranges from 20 ℃ to −20 ℃ for 28 days, the maximum quality loss rate of the cementitious material with a 5% dosage is 1.85%. The change in quality loss rate of stabilized crushed stone with 5% and 6% red mud-based cementitious materials is higher than that with 7% and 8% red mud-based cementitious materials. In addition, with the increase in freeze-thaw cycles, the quality loss rate continues to increase. Through industrial CT and SEM-EDS microscopic analysis, as the number of freeze-thaw cycles increases, the porosity of stabilized crushed stone increases. After the stabilized crushed stone undergoes 28 days of curing and 20 freeze-thaw cycles with a 6% dosage, the porosity increases by 1.53%, and internal crack damage increases and accumulates continuously, showing a changing pattern from less to more and from narrow to wide. The research results have a positive role in promoting the green construction of transportation engineering and the large-scale application of red mud.

     

  • [1]
    刘志强. 交通大国阔步迈向交通强国[N]. 2022-05-02.
    [2]
    黄晓明. 路基路面工程[M]. 6版. 北京:人民交通出版社,2019.
    [3]
    沈卫国,郑小平,李洪震,等. 路面基层材料的分类及其服役状况综述[J]. 武汉理工大学学报,2021,43(9): 1-5.

    SHEN Weiguo, ZHENG Xiaoping, LI Hongzhen, et al. Review on classification and service status of road base cours[J]. Journal of Wuhan University of Technology, 2021, 43(9): 1-5.
    [4]
    马淑杰,张英健,罗恩华,等. 双碳背景下“十四五”大宗固废综合利用建议[J]. 中国投资(中英文),2021(Z8): 22-25.
    [5]
    ZHANG J Z, YAO Z Y, WANG K, et al. Sustainable utilization of bauxite residue (red mud) as a road material in pavements: a critical review[J]. Construction and Building Materials, 2021, 270: 121419.1-121419.18.
    [6]
    XUE S G, JIANG Y F, ZHU F. Ecological disposal and large-scale utilization of bauxite residue: a long way to go[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(1): 1-2. doi: 10.1007/s00128-022-03578-4
    [7]
    李帅,周斌,刘万超,等. 赤泥综合利用产业化现状、存在问题及解决方略探讨[J]. 中国有色冶金,2022,51(5): 32-36.

    LI Shuai, ZHOU Bin, LIU Wanchao, et al. Status-quo, problems and solutions of red mud comprehensive utilization[J]. China Nonferrous Metallurgy, 2022, 51(5): 32-36
    [8]
    CHEN R F, CAI G J, DONG X Q, et al. Mechanical properties and micro-mechanism of loess roadbed filling using by-product red mud as a partial alternative[J]. Construction and Building Materials, 2019, 216: 188-201. doi: 10.1016/j.conbuildmat.2019.04.254
    [9]
    陈瑞锋,田高源,米栋云,等. 赤泥改性黄土的基本工程性质研究[J]. 岩土力学,2018,39(增1): 89-97.

    CHEN Ruifeng, TIAN Gaoyuan, MI Dongyun, et al. Study of basic engineering properties of loess modified by red mud[J]. Rock and Soil Mechanics, 2018, 39(S1): 89-97.
    [10]
    WANG C M, LIU H L, WU D, et al. Engineering and environmental evaluation of red mud amended volcanic ash as a sustainable subgrade material[J]. Journal of Cleaner Production, 2023, 393: 136353.1-136353.18.
    [11]
    齐建召,杨家宽,王梅,等. 赤泥做道路基层材料的试验研究[J]. 公路交通科技,2005,22(6): 30-33. doi: 10.3969/j.issn.1002-0268.2005.06.009

    QI Jianzhao, YANG Jiakuan, WANG Mei, et al. Experi ment research on road base materi al of red mud[J]. Journal of Highway and Transportation Research and Development, 2005, 22(6): 30-33. doi: 10.3969/j.issn.1002-0268.2005.06.009
    [12]
    梁乃兴,张登良,颜祖兴. 水泥赤泥混凝土路用性能研究[J]. 中国公路学报,1996(2): 6-11.

    LIANG Naixing, ZHANG Dengliang, YAN Zuxing. Research on properties of cement red mud concrete in highway pavement[J]. China Journal of Highway and Transport, 1996(2): 6-11.
    [13]
    LIU S T, LI Z Z, LI Y Y, et al. Strength properties of bayer red mud stabilized by lime-fly ash using orthogonal experiments[J]. Construction and Building Materials, 2018, 166: 554-563. doi: 10.1016/j.conbuildmat.2018.01.186
    [14]
    梁旭,梁乃兴,曾建民,等. 水泥赤泥稳定级配碎石基层的性能研究[J]. 重庆交通大学学报(自然科学版),2008,27(6): 1086-1089.

    LIANG Xu, LIANG Naixing, ZENG Jianmin, et al. Performance study on cement and red mud stabilized graded crushed stones[J]. Journal of Chongqing Jiaotong University (Natural Science), 2008, 27(6): 1086-1089.
    [15]
    唐双美,张立明,梁高荣,等. 赤泥掺量对水泥稳定碎石基层性能影响[J]. 公路,2022,67(4): 91-94.

    TANG Shuangmei, ZHANG Liming, LIANG Gaorong, et al. Influence of red mud content on performance of cement stabilize macadam base[J]. Highway, 2022, 67(4): 91-94.
    [16]
    DEELWAL K, DHARAVATH K, KULSHRESHTHA M. Stabilization of red mud by lime, gypsum and investigating its possible use as a geotechnical material in the civil construction[J]. International Journal of Advances in Engineering & Technology, 2014, 7(4): 1238-1244.
    [17]
    SARATH CHANDRA K, KRISHNAIAH S. Strength and leaching characteristics of red mud (bauxite residue) as a geomaterial in synergy with fly ash and gypsum[J]. Transportation Research Interdisciplinary Perspectives, 2022, 13: 100566.1-100566.6.
    [18]
    ZHANG J, LI S C, LI Z F. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks[J]. Journal of Cleaner Production, 2020, 273: 122972.1-122972.12.
    [19]
    中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程:JTG 3420—2020 [S]. 北京:人民交通出版社,2020.
    [20]
    中华人民共和国交通运输部. 公路路面基层施工技术细则:JTG/T F20—2015[S]. 北京:人民交通出版社,2015.
    [21]
    山东省市场监督管理局. 水泥稳定碎石基层施工技术规范:DB37/T 3577—2019[S]. 北京: 人民交通出版社,2019.
    [22]
    中华人民共和国交通运输部.公路工程无机结合料稳定材料试验规程:JTG 3441—2024 [S]. 北京:人民交通出版社,2024.
    [23]
    杨利香,宋兴福,陆美荣,等. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报,2022,36(4): 111-117.

    YANG Lixiang, SONG Xingfu, LU Meirong, et al. The mixture proportioning design of sand-containing pervious concrete based on mortar thickness of recycled coarse aggregate[J]. Materials Reports, 2022, 36(4): 111-117.
    [24]
    LI S C, ZHANG J, LI Z F, et al. Feasibility study of red mud-blast furnace slag based geopolymeric grouting material: effect of superplasticizers[J]. Construction and Building Materials, 2021, 267: 120910.1-120910.13.
    [25]
    夏冬桃,吴晨,崔凯,等. 粉煤灰和硅灰取代率对碱矿渣混凝土力学性能影响分析[J]. 西南交通大学学报,2024,59(5): 1113-1122.

    XIA Dongtao, WU Chen, CUI Kai, et al. Effect of fly ash and silica fume contents on mechanical properties of alkali-activated slag-based concrete [J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1113-1122.
    [26]
    李茂红,张雨杰,陈航,等. 粉煤灰矿渣掺量对劣级配砂配制混凝土性能的影响[J]. 西南交通大学学报,2015,50(2): 342-346,353. doi: 10.3969/j.issn.0258-2724.2015.02.021

    LI Maohong, ZHANG Yujie, CHEN Hang, et al. Effect of dosage of fly ash and blast furnace slag on performance of concrete prepared with poorly graded sand[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 342-346,353. doi: 10.3969/j.issn.0258-2724.2015.02.021
    [27]
    赵人达,杨世玉,贾文涛,等. 粉煤灰基地聚物混凝土的耐久性研究新进展[J]. 西南交通大学学报,2021,56(5): 1065-1074.

    ZHAO Renda, YANG Shiyu, JIA Wentao, et al. Review of recent progress in durability of fly ash based geopolymer concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1065-1074.
    [28]
    王一琪. 荷载-冻融作用下水泥稳定碎石基层材料损伤研究[D]. 哈尔滨:哈尔滨工业大学,2017
  • Relative Articles

    [1]HOU Chao, JIN Xiaoguang, HE Jie, FANG Zhiyuan. Freeze-Thaw Damage Characteristics of Anhydrite Rock Pore Structures Based on Nuclear Magnetic Resonance Technology[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230314
    [2]LI Fuhai, YANG Zongchi, LIU Gengyuan, LIU Menghui, WU Haonan, CHEN Zhao, LI Guhua. Flexural Performance of PP-ECC Beams Under Coupling of Freeze-Thaw Cycles and Bending Loads[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 53-62. doi: 10.3969/j.issn.0258-2724.20220645
    [3]LI Jin, SHI Yuefeng, XIAO Xin, LOU Liangwei, CAI Degou, XIAO Feipeng. Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 281-288. doi: 10.3969/j.issn.0258-2724.20220335
    [4]QIN Pengfei, ZHONG Hongwei, LIU Jian, SU Danna, SUN Zhuoyu. Analysis of Split Grouting Mechanism Considering Coupling Effect of Slurry and Soil Stress[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 584-591. doi: 10.3969/j.issn.0258-2724.20220433
    [5]CHEN Chenghua, HUANG Zhichao, HUANG Junjie, YANG Chen. Mechanical Property and Frost Resistance Analysis of Foamed Lightweight Soil with Fiber Filament and Mesh Reinforcement[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 462-469. doi: 10.3969/j.issn.0258-2724.20210160
    [6]HOU Chao, JIN Xiaoguang, HE Jie, ZHANG Chi. Research on Damage Model of Rock Under Freeze-Thaw Cycles Based on Maximum Tensile Strain Criterion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1045-1055. doi: 10.3969/j.issn.0258-2724.20210493
    [7]WU Chaoyang, JIANG Xin. Application Error of Traffic Speed Deflectometer for Asphalt Pavement Structure with Semi-Rigid Base[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1109-1115. doi: 10.3969/j.issn.0258-2724.20200247
    [8]ZHANG Xianmin, KONG Weibin, LIU Xiaolan. Dynamic Displacement Response of Pavement Structure under Moving Vehicle Load[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 357-363. doi: 10.3969/j.issn.0258-2724.20170137
    [9]WANG Wei, ZHANG Xifa, LÜ Yan. Experimental Study on Frost Heave, Thaw Settlement and Thermal Properties of Foundation Soils along China-Russia Crude Oil Pipeline[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 733-742. doi: 10.3969/j.issn.0258-2724.20180801
    [10]WU Yu, JIANG Xin, LIANG Xuejiao, FENG Wenqing. Mechanical Behaviours of Typical Asphalt Pavement Structures under Wheel Loads[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 563-570. doi: 10.3969/j.issn.0258-2724.2017.03.017
    [11]WANG Zhen, SHEN Mingrong, LIU Ang. Water-Rock Interaction Characteristics and Softening Mechanism of Calcareous Mudstone[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1061-1066. doi: 10.3969/j.issn.0258-2724.2015.06.012
    [12]CHEN Shuxian, WANG Yuantao, YANG Wenfeng, LI Meng, QIN Wenfeng, TANG Qingru. Analysis of Temperature Field of Resin Matrix Composite Patches during Curing Process[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 869-874. doi: 10.3969/j.issn.0258-2724.2014.05.020
    [13]WANG Jian, YAO Lingkan, JIANG Liangwei. Seismic Deformation and Failure Modes and Mechanism of Soil Mass[J]. Journal of Southwest Jiaotong University, 2010, 23(2): 196-202. doi: 10. 3969/ j. issn. 0258-2724.
    [14]HE Zhen, WANG Lei, WANG Xuebin, LIANG Wenquan, HUANG Xiaoxia. Investigation on Properties and Mechanism of HPCM Stabilizing Roadbed of Expressway[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 709-713,746.
    [15]XU Jin, SHAO Yiming, PENG Qiyuan, CHEN Yongxi. Mechanism of Run-Off-Road on Horizontal Curves Caused by Collision Avoidance of Vehicles[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 177-181.
    [16]WANGHai-bin, GAO Bo. Load-BearingM echanism ofCompound TunnelAnchorage[J]. Journal of Southwest Jiaotong University, 2005, 18(6): 759-764.
    [17]HUANG Jian-hong, PU Yun. Action of International Direct Investment on Invested Country Economics[J]. Journal of Southwest Jiaotong University, 2004, 17(3): 285-290.
    [18]WUGuo-xiong, YAOLing-kan, YI Zhi-jian. Research on Forming Mechanism of Inchoate Cracks in Cement Concrete Pavement[J]. Journal of Southwest Jiaotong University, 2003, 16(3): 304-308.
    [19]LUHong-lun. Continuum Theory of Mixture for Freezing and Thawing of Water-Saturated Porous Media[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 599-513.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 42.2 %FULLTEXT: 42.2 %META: 50.3 %META: 50.3 %PDF: 7.5 %PDF: 7.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.6 %其他: 22.6 %上海: 0.7 %上海: 0.7 %北京: 8.9 %北京: 8.9 %十堰: 0.7 %十堰: 0.7 %南昌: 0.7 %南昌: 0.7 %厦门: 1.4 %厦门: 1.4 %哥伦布: 1.4 %哥伦布: 1.4 %大庆: 0.7 %大庆: 0.7 %天津: 5.5 %天津: 5.5 %太原: 0.7 %太原: 0.7 %宁波: 0.7 %宁波: 0.7 %宜宾: 0.7 %宜宾: 0.7 %宣城: 0.7 %宣城: 0.7 %常州: 0.7 %常州: 0.7 %平顶山: 1.4 %平顶山: 1.4 %张家口: 3.4 %张家口: 3.4 %成都: 0.7 %成都: 0.7 %扬州: 1.4 %扬州: 1.4 %池州: 2.1 %池州: 2.1 %淄博: 0.7 %淄博: 0.7 %温州: 0.7 %温州: 0.7 %漯河: 4.1 %漯河: 4.1 %石家庄: 6.2 %石家庄: 6.2 %芒廷维尤: 13.7 %芒廷维尤: 13.7 %衡阳: 0.7 %衡阳: 0.7 %西宁: 15.1 %西宁: 15.1 %遵义: 0.7 %遵义: 0.7 %郑州: 1.4 %郑州: 1.4 %重庆: 0.7 %重庆: 0.7 %长沙: 0.7 %长沙: 0.7 %马鞍山: 0.7 %马鞍山: 0.7 %其他上海北京十堰南昌厦门哥伦布大庆天津太原宁波宜宾宣城常州平顶山张家口成都扬州池州淄博温州漯河石家庄芒廷维尤衡阳西宁遵义郑州重庆长沙马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article views(73) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return