Citation: | HE Jingyuan, GAO Weihao, ZHANG Jian, WANG Chuan, LI Zhaofeng, YOU Hao. Freeze-Thaw Resistance of Red Mud-Based Stabilized Crushed Stone[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230350 |
In order to achieve the safe application of red mud-based cementitious materials in road engineering, the mechanical properties and quality of red mud-based stabilized crushed stone base under freeze-thaw cycles were studied. The influence of freeze-thaw cycle temperature and number on mechanical properties and quality loss was explored by industrial CT scanning and SEM-EDS. Research has shown that when the temperature ranges from 20 ℃ to −20 ℃ for 28 days, the maximum quality loss rate of the cementitious material with a 5% dosage is 1.85%. The change in quality loss rate of stabilized crushed stone with 5% and 6% red mud-based cementitious materials is higher than that with 7% and 8% red mud-based cementitious materials. In addition, with the increase in freeze-thaw cycles, the quality loss rate continues to increase. Through industrial CT and SEM-EDS microscopic analysis, as the number of freeze-thaw cycles increases, the porosity of stabilized crushed stone increases. After the stabilized crushed stone undergoes 28 days of curing and 20 freeze-thaw cycles with a 6% dosage, the porosity increases by 1.53%, and internal crack damage increases and accumulates continuously, showing a changing pattern from less to more and from narrow to wide. The research results have a positive role in promoting the green construction of transportation engineering and the large-scale application of red mud.
[1] |
刘志强. 交通大国阔步迈向交通强国[N]. 2022-05-02.
|
[2] |
黄晓明. 路基路面工程[M]. 6版. 北京:人民交通出版社,2019.
|
[3] |
沈卫国,郑小平,李洪震,等. 路面基层材料的分类及其服役状况综述[J]. 武汉理工大学学报,2021,43(9): 1-5.
SHEN Weiguo, ZHENG Xiaoping, LI Hongzhen, et al. Review on Classification and Service Status of Road Base Cours[J]. Journal of Wuhan University of Technology, 2021, 43(9): 1-5.
|
[4] |
马淑杰,张英健,罗恩华,等. 双碳背景下“十四五”大宗固废综合利用建议[J]. 中国投资(中英文),2021(Z8): 22-25.
|
[5] |
ZHANG J Z, YAO Z Y, WANG K, et al. Sustainable utilization of bauxite residue (red mud) as a road material in pavements: a critical review[J]. Construction and Building Materials, 2021, 270: 121419.1-121419.18.
|
[6] |
XUE S G, JIANG Y F, ZHU F. Ecological Disposal and Large-scale Utilization of Bauxite Residue: a Long way to go[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(1): 1-2. doi: 10.1007/s00128-022-03578-4
|
[7] |
李帅,周斌,刘万超,等. 赤泥综合利用产业化现状、存在问题及解决方略探讨[J]. 中国有色冶金,2022,51(5): 32-36.
LI Shuai, ZHOU Bin, LIU Wanchao, et al. Status-quo, problems and solutions of red mud comprehensive utilization[J]. China Nonferrous Metallurgy, 2022, 51(5): 32-36
|
[8] |
CHEN R F, CAI G J, DONG X Q, et al. Mechanical properties and micro-mechanism of loess roadbed filling using by-product red mud as a partial alternative[J]. Construction and Building Materials, 2019, 216: 188-201. doi: 10.1016/j.conbuildmat.2019.04.254
|
[9] |
陈瑞锋,田高源,米栋云,等. 赤泥改性黄土的基本工程性质研究[J]. 岩土力学,2018,39(增1): 89-97.
CHEN Ruifeng, TIAN Gaoyuan, MI Dongyun, et al. Study of basic engineering properties of loess modified by red mud[J]. Rock and Soil Mechanics, 2018, 39(S1): 89-97.
|
[10] |
WANG C M, LIU H L, WU D, et al. Engineering and environmental evaluation of red mud amended volcanic ash as a sustainable subgrade material[J]. Journal of Cleaner Production, 2023, 393: 136353.1-136353.18.
|
[11] |
齐建召,杨家宽,王梅,等. 赤泥做道路基层材料的试验研究[J]. 公路交通科技,2005,22(6): 30-33. doi: 10.3969/j.issn.1002-0268.2005.06.009
QI Jianzhao, YANG Jiakuan, WANG Mei, et al. Experi ment research on road base materi al of red mud[J]. Journal of Highway and Transportation Research and Development, 2005, 22(6): 30-33. doi: 10.3969/j.issn.1002-0268.2005.06.009
|
[12] |
梁乃兴,张登良,颜祖兴. 水泥赤泥混凝土路用性能研究[J]. 中国公路学报,1996(2): 6-11.
LIANG Naixing, ZHANG Dengliang, YAN Zuxing. Research on properties of cement red mud concrete in highway pavement[J]. China Journal of Highway and Transport, 1996(2): 6-11.
|
[13] |
LIU S T, LI Z Z, LI Y Y, et al. Strength properties of Bayer red mud stabilized by lime-fly ash using orthogonal experiments[J]. Construction and Building Materials, 2018, 166: 554-563. doi: 10.1016/j.conbuildmat.2018.01.186
|
[14] |
梁旭,梁乃兴,曾建民,等. 水泥赤泥稳定级配碎石基层的性能研究[J]. 重庆交通大学学报(自然科学版),2008,27(6): 1086-1089.
LIANG Xu, LIANG Naixing, ZENG Jianmin, et al. Performance study on cement and red mud stabilized graded crushed stones[J]. Journal of Chongqing Jiaotong University (Natural Science), 2008, 27(6): 1086-1089.
|
[15] |
唐双美,张立明,梁高荣,等. 赤泥掺量对水泥稳定碎石基层性能影响[J]. 公路,2022,67(4): 91-94.
TANG Shuangmei, ZHANG Liming, LIANG Gaorong, et al. Influence of red mud content on performance of cement stabilize macadam base[J]. Highway, 2022, 67(4): 91-94.
|
[16] |
DEELWAL K, DHARAVATH K, KULSHRESHTHA M. Stabilization of red mud by lime, gypsum and investigating its possible use as a geotechnical material in the civil construction[J]. International Journal of Advances in Engineering & Technology, 2014, 7(4): 1238-1244.
|
[17] |
SARATH CHANDRA K, KRISHNAIAH S. Strength and leaching characteristics of red mud (bauxite residue) as a geomaterial in synergy with fly ash and gypsum[J]. Transportation Research Interdisciplinary Perspectives, 2022, 13: 100566.1-100566.6.
|
[18] |
ZHANG J, LI S C, LI Z F. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks[J]. Journal of Cleaner Production, 2020, 273: 122972.1-122972.12.
|
[19] |
中华人民共和国交通运输部. JTG 3420—2020 公路工程水泥及水泥混凝土试验规程 [S]. 北京:人民交通出版社,2020.
|
[20] |
杨利香,宋兴福,陆美荣,等. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报,2022,36(4): 111-117.
YANG Lixiang, SONG Xingfu, LU Meirong, et al. The mixture proportioning design of sand-containing pervious concrete based on mortar thickness of recycled coarse aggregate[J]. Materials Reports, 2022, 36(4): 111-117.
|
[21] |
LI S C, ZHANG J, LI Z F, et al. Feasibility study of red mud-blast furnace slag based geopolymeric grouting material: effect of superplasticizers[J]. Construction and Building Materials, 2021, 267: 120910.1-120910.13.
|
[22] |
夏冬桃,吴晨,崔凯,等. 粉煤灰和硅灰取代率对碱矿渣混凝土力学性能影响研究[J/OL]. 西南交通大学学报. [2024-01-04]. https://kns.cnki.net/kcms2/article/abstract?v=sZ39k5Pv5zsZZjeGHQTmRWRWiDRgclWVaw3-0FwU1KmNhjOzRlH22ML4amTte2sPURrrT5o4w-SbSLzxifIpYLbGWT45xZoENJ2QWxDfxV_f_HvWAdszV99T9AnyWQUglWxfjZe7bEJR_mp16KpESK8plW8NUYTZsMHHJWHrpeievug3316DAqdx7tjk65eL&uniplatform=NZKPT&language=CHS
|
[23] |
李茂红,张雨杰,陈航,等. 粉煤灰矿渣掺量对劣级配砂配制混凝土性能的影响[J]. 西南交通大学学报,2015,50(2): 342-346,353. doi: 10.3969/j.issn.0258-2724.2015.02.021
LI Maohong, ZHANG Yujie, CHEN Hang, et al. Effect of dosage of fly ash and blast furnace slag on performance of concrete prepared with poorly graded sand[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 342-346,353. doi: 10.3969/j.issn.0258-2724.2015.02.021
|
[24] |
赵人达,杨世玉,贾文涛,等. 粉煤灰基地聚物混凝土的耐久性研究新进展[J]. 西南交通大学学报,2021,56(5): 1065-1074.
ZHAO Renda, YANG Shiyu, JIA Wentao, et al. Review of recent progress in durability of fly ash based geopolymer concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1065-1074. [
|
[25] |
王一琪. 荷载-冻融作用下水泥稳定碎石基层材料损伤研究[D]. 哈尔滨:哈尔滨工业大学,2017
|