• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LI Jincheng, DING Junjun, NIU Yuecheng, LI Fu, WU Pengpeng. Analysis of Rolling Contact between Wheel and Rail in Switch Area[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1355-1361. doi: 10.3969/j.issn.0258-2724.20190199
Citation: LI Jincheng, DING Junjun, NIU Yuecheng, LI Fu, WU Pengpeng. Analysis of Rolling Contact between Wheel and Rail in Switch Area[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1355-1361. doi: 10.3969/j.issn.0258-2724.20190199

Analysis of Rolling Contact between Wheel and Rail in Switch Area

doi: 10.3969/j.issn.0258-2724.20190199
  • Received Date: 14 Mar 2019
  • Rev Recd Date: 11 Apr 2019
  • Available Online: 04 Sep 2019
  • Publish Date: 15 Dec 2020
  • In order to study the wheel-rail matching relationship and applicability of the classical wheel-rail contact theory in turnout area, the finite element model of the wheel-rail contact in switch area was established, and several calculation programs of the normal force and tangential force on switch were compiled. By taking the typical section of the No. 18 high-speed switch rail area and the switch frog area as an example, the contact patch area and contact stress in the rolling contact theories of the Hertz, semi-Hertz, Kalker three-dimensional non-Hertz and the finite element model are compared in the normal direction. The creep forces calculated by the FASTSIM algorithm based on Hertz and semi-Hertz, the Polach model and CONTACT are compared under different working conditions. The calculation results show that as the stress-strain characteristics of the wheel-rail material is considered in the finite element model, the result is closer to the actual working conditions. The maximum difference between the contact patch areas of Hertz, semi-Hertz, Kalker non-Hertz and finite element method 50.42%, 17.83% and 24.78%. The maximum difference in contact stress is 60.28%, 25.25% and 32.37%. Under the different working conditions, the creep force of the four tangential force models shows the same trend with the varying creep rate. Under the same working condition, the maximum difference between the creep forces calculated by CONTACT, FASTSIM algorithm based on Hertz and half Hertz and the Polach model are 8.08%, 5.19%, and 9.70%. According to the calculation accuracy of the switch in the normal and tangential directions and computational efficiency, the semi-hertz contact theory combined with the FASTSIM algorithm has advantages in large-scale data processing.

     

  • 任尊松,翟婉明,王其昌. 轮轨接触几何关系在道岔系统动力学中的应用[J]. 铁道学报,2001,23(5): 12-15.

    REN Zunsong, ZHAI Wanming, WANG Qichang. The use of spatial wheel/rail contact geometric relationship in the turnout system dynamics[J]. Journal of the China Railway Society, 2001, 23(5): 12-15.
    丁军君,李芾,黄运华. 基于半赫兹接触的车轮磨耗计算[J]. 西南交通大学学报,2011,46(2): 195-199. doi: 10.3969/j.issn.0258-2724.2011.02.003

    DING Junjun, LI Fu, HUANG Yunhua. Calculation of wheel wear based on semi-Hertzian contact[J]. Journal of Southwest Jiaotong University, 2011, 46(2): 195-199. doi: 10.3969/j.issn.0258-2724.2011.02.003
    HERTZ H. On the contact of elastic solids[J]. Journal für die Reine und Angewandte Mathematik, 1882, 92: 156-171.
    AYASSE J, CHOLLET H. Determination of the wheel rail contact patch in semi-Hertzian conditions[J]. Vehicle System Dynamics, 2005, 43(3): 161-172. doi: 10.1080/00423110412331327193
    KALKER J J, JOHNSON K L. Three-dimensional elastic bodies in rolling contact[M]. Netherland: Kluwer Academic publishers, 1990: 268-272.
    肖乾,车宇翔,周新建,等. 轮轨滚动接触棘轮效应数值分析[J]. 铁道学报,2013,35(12): 19-23. doi: 10.3969/j.issn.1001-8360.2013.12.003

    XIAO Qian, CHE Yuxiang, ZHOU Xinjian, et al. Numerical analysis on ratcheting effect of rolling contact between wheel and rail[J]. Journal of the China Railway Society, 2013, 35(12): 19-23. doi: 10.3969/j.issn.1001-8360.2013.12.003
    CARTER F W. On the action of a locomotive driving wheel[J]. Proceedings of the Royal Society of London, 1926, 112(760): 151-157.
    JOHNSON K L. The effect of a tangential contact force on the rolling motion of an elastic sphere on a plane[J]. Journal of Applied Mechanics, 1958, 25(1): 339-346.
    VERMEULEN P J, JOHNSON K L. Contact of nonspherical elastic bodies transmitting tangential forces[J]. Journal of Applied Mechanics, 1964, 31(2): 338-340. doi: 10.1115/1.3629610
    SHEN Z Y, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1/2/3): 79-83.
    KALKER J J. On the rolling contact of two elastic bodies in the presence of dry friction[D]. The Netherland: Delft University of Technology, 1967.
    KALKER J J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13. doi: 10.1080/00423118208968684
    POLACH O. Fast wheel-rail forces calculation computer code[J]. Vehicle System Dynamics, 2000, 33(S): 728-739.
    丁军君. 基于蠕滑机理的重载货车车轮磨耗研究[D]. 成都: 西南交通大学, 2012.
    徐井芒. 高速道岔曲尖轨磨耗仿真分析研究[D]. 成都: 西南交通大学, 2015.
  • Relative Articles

    [1]MENG Fanyu, SHEN Longjiang, DENG Xiaoxing, YAO Yuan. Optimization of JM3 Wheel Profile Considering Equivalent Conicity Dispersion[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 346-355. doi: 10.3969/j.issn.0258-2724.20230173
    [2]CHEN Yu, AN Boyang, PAN Zili, MO Hongyuan, WANG Ping, FANG Jiasheng, QIAN Yao, XU Jingmang. Analysis of Wheel-Rail Contact and Wear Considering Variable Cross-Sections of Switch Rail[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1250-1258. doi: 10.3969/j.issn.0258-2724.20210040
    [3]XU Jingmang, ZHENG Zhaoguang, LAI Jun, YANG Huaizhi, YAN Zheng, QIAN Yao, WANG Ping. Influence of Track Parameters on Wheel/Rail Contact Behavior of High-Speed Turnout[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 990-999. doi: 10.3969/j.issn.0258-2724.20210449
    [4]GUAN Qinghua, ZHAO Xin, WEN Zefeng, JIN Xuesong. Calculation Method of Hertz Normal Contact Stiffness[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 883-888. doi: 10.3969/j.issn.0258-2724.20210015
    [5]CHEN Rong, WANG Xuetong, CHEN Jiayin, DING Ye, XU Jingmang. Influence of Wheelset Installation Deflection Angle on Dynamic Characteristics of High-Speed Vehicles Crossing Switch[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 872-882. doi: 10.3969/j.issn.0258-2724.20190535
    [6]XU Kai, LI Fu, LI Dongyu, ZHONG Hao. Wheel-Rail Profile Matching Relationship of EMU Train[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 389-399. doi: 10.3969/j.issn.0258-2724.2017.02.024
    [7]QIAN Yao, WANG Jian, WANG Ping, AN Boyang, SU Qian, XU Jingmang. Wheel-Rail Profile Matching for High Speed Railway with Different Rail Profiles[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 232-238. doi: 10.3969/j.issn.0258-2724.2017.02.004
    [8]JIANG Xiaoyu, LI Xiaotao, LI Xu, CAO Shihao. Research on Wheel/Rail Rolling Contact at High Speed and Fatigue Crack Propagation in Rail[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 274-281. doi: 10.3969/j.issn.0258-2724.2016.02.007
    [9]DENG Weili, XIAO Nan, YONG Yuan. Numerical Simulation of Monitoring Wheel-Rail Contact Conditions Using Ultrasonic Technology[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1073-1077. doi: 10.3969/j.issn.0258-2724.2014.06.020
    [10]XU Jingmang, WANG Ping, CHEN Rong, XU Hao. Mechanical Properties of High-Speed Turnout Switching and Locking Device[J]. Journal of Southwest Jiaotong University, 2013, 26(4): 702-707. doi: 10.3969/j.issn.0258-2724.2013.04.017
    [11]CAO Yang, WANG Ping, ZHAO Weihua. Design Method for Rigid Frog Based on Wheel/Rail Contact Parameters[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 605-610,617. doi: 10.3969/j.issn.0258-2724.2012.04.011
    [12]ZHAO Xin, JIN Xuesong, WEN Zefeng, WU Lei. Thermoelastic Stresses Due to Wheel-Rail Contact in Pure Sliding State[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 51-56.
    [13]CAI Xiaopei, LI Chenghui. Wheel/Rail Contact Irregularity in Crossing Zone of High-Speed Turnout[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 86-90.
    [14]CHEN Xiaoping, WANG Ping, CHEN Rong, GUO Likang. Spatial Coupling Vibration Properties of High-Speed Vehicle-Turnout[J]. Journal of Southwest Jiaotong University, 2008, 21(4): 453-458.
    [15]ZHANG Li-min. Analysis of Wheel/Rail Contact Stresses and Rail Corrugation[J]. Journal of Southwest Jiaotong University, 2003, 16(1): 34-37.
    [16]WANG Jue, LI Zhi. Algorithm for Wheel Rail Contact Geometry[J]. Journal of Southwest Jiaotong University, 2003, 16(2): 132-137.
  • Cited by

    Periodical cited type(5)

    1. 周智强,邢书科,王兆刚,孙洪斌,董昆灵,杨荣山. 高速铁路大跨度连续斜拉桥上梁端一体化装置性能研究. 铁道标准设计. 2024(04): 63-69+87 .
    2. 陈雨,周佳仪,宋娟,安博洋,吕涛,王平,何庆,朱颖. 考虑摇头角的非赫兹滚动接触算法对比研究. 铁道学报. 2024(06): 108-118 .
    3. 周长磊. 有轨电车嵌入式连续支承道岔结构施工技术. 交通科技与管理. 2023(06): 54-58 .
    4. 张峻瑞,张军,马贺,窦蕴平. 轮对通过磨耗后固定辙叉的试验研究及接触分析. 机械工程学报. 2023(18): 304-311 .
    5. 杨宜坤,宁静,李艳萍,陈春俊,张兵. 道岔对高速列车小幅蛇行极限环演变的影响. 中国测试. 2022(02): 27-33 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 41.9 %FULLTEXT: 41.9 %META: 52.8 %META: 52.8 %PDF: 5.3 %PDF: 5.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.1 %其他: 10.1 %其他: 0.6 %其他: 0.6 %Kennedy Town: 0.6 %Kennedy Town: 0.6 %[]: 1.0 %[]: 1.0 %上海: 0.2 %上海: 0.2 %东莞: 0.8 %东莞: 0.8 %临汾: 0.3 %临汾: 0.3 %临沂: 0.3 %临沂: 0.3 %保定: 0.3 %保定: 0.3 %北京: 5.5 %北京: 5.5 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %南昌: 0.3 %南昌: 0.3 %台北: 0.3 %台北: 0.3 %哈尔滨: 0.5 %哈尔滨: 0.5 %哥伦布: 0.6 %哥伦布: 0.6 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %大连: 1.0 %大连: 1.0 %天津: 0.8 %天津: 0.8 %太原: 0.3 %太原: 0.3 %宣城: 0.2 %宣城: 0.2 %山东省: 0.3 %山东省: 0.3 %广州: 0.5 %广州: 0.5 %延安: 0.3 %延安: 0.3 %张家口: 2.3 %张家口: 2.3 %德阳: 0.2 %德阳: 0.2 %成都: 4.5 %成都: 4.5 %扬州: 0.2 %扬州: 0.2 %昆明: 0.2 %昆明: 0.2 %杭州: 0.5 %杭州: 0.5 %池州: 0.6 %池州: 0.6 %沈阳: 1.0 %沈阳: 1.0 %洛阳: 0.2 %洛阳: 0.2 %海口: 0.5 %海口: 0.5 %深圳: 0.5 %深圳: 0.5 %温州: 0.2 %温州: 0.2 %漯河: 1.1 %漯河: 1.1 %石家庄: 3.4 %石家庄: 3.4 %芒廷维尤: 13.4 %芒廷维尤: 13.4 %芝加哥: 0.2 %芝加哥: 0.2 %莫斯科: 0.3 %莫斯科: 0.3 %西宁: 37.0 %西宁: 37.0 %西安: 1.8 %西安: 1.8 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.2 %贵阳: 0.2 %达州: 1.0 %达州: 1.0 %运城: 1.0 %运城: 1.0 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.2 %郑州: 0.2 %重庆: 0.3 %重庆: 0.3 %长沙: 3.2 %长沙: 3.2 %青岛: 0.5 %青岛: 0.5 %其他其他Kennedy Town[]上海东莞临汾临沂保定北京十堰南京南昌台北哈尔滨哥伦布圣彼得堡大连天津太原宣城山东省广州延安张家口德阳成都扬州昆明杭州池州沈阳洛阳海口深圳温州漯河石家庄芒廷维尤芝加哥莫斯科西宁西安诺沃克贵阳达州运城邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views(778) PDF downloads(38) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return