Citation: | XU Jingmang, ZHENG Zhaoguang, LAI Jun, YANG Huaizhi, YAN Zheng, QIAN Yao, WANG Ping. Influence of Track Parameters on Wheel/Rail Contact Behavior of High-Speed Turnout[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 990-999. doi: 10.3969/j.issn.0258-2724.20210449 |
In order to investigate reasonable rail gauge and rail cant of No.18 turnout with 60N rail under the straight passing speed 350 km/h, based on the track line method and Kalker’s 3D non-Herz rolling contact theory, key sections of 60N rail turnout and measured LMA worn wheels were used to analyzed the wheel-rail contact geometric and mechanical characteristics under different rail gauges and different rail cant parameters. The calculation results were compared with those of CHN60 rail turnout. The results show that under the premise of ensuring safety, properly widening the rail gauge can improve the wheel-rail matching relationship, improve the stability of the train went through the turnout, reduce the wheel-rail contact stress and surface rolling contact fatigue factor when the wheelset-lateral displacement is greater than 8 mm, and extend the service life of the rail. When the rail cant is 1/30, 1/40 and 1/50, the wheel-rail contact parameters have little difference and the matching performance is better. When the rail cant is 1/10 and 1/20, the lateral irregularity and wheel-rail rolling contact fatigue factors are generally large, and the adaptability of 1/10 rail cant to wheel wear is poor. Compared with CHN60 rail turnout, the equivalent conicity of 60N rail turnout is generally smaller, and the stability of the train went through the turnout is better. Wheel wear is easy to lead to wheelspin in the wheel-rail transition section, resulting in switch rail damage.
[1] |
王平,陈嵘,徐井芒,等. 高速铁路道岔系统理论与工程实践研究综述[J]. 西南交通大学学报,2016,51(2): 357-372. doi: 10.3969/j.issn.0258-2724.2016.02.015
WANG Ping, CHEN Rong, XU Jingmang, et al. Theories and engineering practices of high-speed railway turnout system: survey and review[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 357-372. doi: 10.3969/j.issn.0258-2724.2016.02.015
|
[2] |
杜星,陶功权,杨城,等. 轨底坡变化对高速车辆运行行为的影响[J]. 西南交通大学学报,2022,57(2): 286-294.
DU Xing, TAO Gongquan, YANG Cheng, et al. Influence of different rail cants change on dynamical characteristics of high-speed railway vehicles[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 286-294.
|
[3] |
钱瑶,王平,苏谦,等. 轨底坡对高速铁路轮轨接触行为影响分析[J]. 铁道工程学报,2018,35(3): 18-25. doi: 10.3969/j.issn.1006-2106.2018.03.004
QIAN Yao, WANG Ping, SU Qian, et al. Effect analysis of rail cant on the wheel-rail contact behavior of high-speed railway[J]. Journal of Railway Engineering Society, 2018, 35(3): 18-25. doi: 10.3969/j.issn.1006-2106.2018.03.004
|
[4] |
陈嵘,温静,于浩,等. 地铁线路轨距对轮轨接触行为的影响[J]. 中南大学学报(自然科学版),2020,51(3): 824-831. doi: 10.11817/j.issn.1672-7207.2020.03.028
CHEN Rong, WEN Jing, YU Hao, et al. Influence of rail gauge on wheel-rail contact behavior of metro line[J]. Journal of Central South University (Science and Technology), 2020, 51(3): 824-831. doi: 10.11817/j.issn.1672-7207.2020.03.028
|
[5] |
陈嵘,温静,李博,等. 考虑非对称轨底坡的轮轨滚动接触应力分析[J]. 铁道工程学报,2019,36(5): 13-19,70. doi: 10.3969/j.issn.1006-2106.2019.05.003
CHEN Rong, WEN Jing, LI Bo, et al. Analysis of wheel/rail rolling contact stress considering asymmetric rail cant[J]. Journal of Railway Engineering Society, 2019, 36(5): 13-19,70. doi: 10.3969/j.issn.1006-2106.2019.05.003
|
[6] |
CUI D B, LI L, JIN X S, et al. Wheel-rail profiles matching design considering railway track parameters[J]. Chinese Journal of Mechanical Engineering, 2010, 23(4): 410-417. doi: 10.3901/CJME.2010.04.410
|
[7] |
SÁNCHEZ R A, SANJUÁN E L, BRAVO J L. Experimental validation of track inspection trolley using a rigorous self-checking procedure[J]. Journal of Surveying Engineering, 2020, 146(3): 0000315.1-0000315.8.
|
[8] |
李超,张军,李霞,等. 动态轨距优化技术在重载道岔上的应用[J]. 大连交通大学学报,2015,36(S1): 55-61.
LI Chao, ZHANG Jun, LI Xia, et al. Research on dynamic gauge optimization of heavy haul switch rail[J]. Journal of Dalian Jiaotong University, 2015, 36(S1): 55-61.
|
[9] |
YE Y G, SUN Y. Reducing wheel wear from the perspective of rail track layout optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2021, 235(2): 217-234. doi: 10.1177/1464419320956831
|
[10] |
闫正,陈嘉胤,徐井芒,等. 不同车轮踏面与高速60N钢轨道岔静态接触特性研究[J]. 中南大学学报(自然科学版),2021,52(4): 1358-1370. doi: 10.11817/j.issn.1672-7207.2021.04.032
YAN Zheng, CHEN Jiayin, XU Jingmang, et al. Study of static contact properties of diverse wheel treads and high-speed 60N rail turnout[J]. Journal of Central South University (Science and Technology), 2021, 52(4): 1358-1370. doi: 10.11817/j.issn.1672-7207.2021.04.032
|
[11] |
陈嵘,方嘉晟,汪鑫,等. 车轮型面演变对高速道岔区轮轨接触行为影响分析[J]. 铁道学报,2019,41(5): 101-108. doi: 10.3969/j.issn.1001-8360.2019.05.012
CHEN Rong, FANG Jiasheng, WANG Xin, et al. Influence of wheel profile evolution on wheel-rail contact behavior in high-speed turnout area[J]. Journal of the China Railway Society, 2019, 41(5): 101-108. doi: 10.3969/j.issn.1001-8360.2019.05.012
|
[12] |
王晨,罗世辉,邬平波,等. 动车组踏面凹型磨耗对车辆稳定性的影响[J]. 西南交通大学学报,2021,56(1): 84-91.
WANG Chen, LUO Shihui, WU Pingbo, et al. Effect of hollow worn tread of electric multiple units on vehicle stability[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 84-91.
|
[13] |
British Standards Institution. BS EN 15302: 2008 Railway applications—method for determining the equivalent conicity[S]. London: British Standards Institution, 2008.
|
[14] |
International Union of Railways. UIC code 519 method for determining the equivalent conicity[S]. Paris: International Union of Railways, 2004.
|
[15] |
马晓川,王平,徐井芒,等. 铁路道岔轮轨非赫兹滚动接触算法对比与分析[J]. 机械工程学报,2019,55(18): 95-103. doi: 10.3901/JME.2019.18.095
MA Xiaochuan, WANG Ping, XU Jingmang, et al. Analysis and comparison of different wheel-rail non-hertzian rolling contact approaches in railway turnout[J]. Journal of Mechanical Engineering, 2019, 55(18): 95-103. doi: 10.3901/JME.2019.18.095
|
[16] |
干锋,戴焕云,高浩,等. 铁道车辆不同踏面等效锥度和轮轨接触关系计算[J]. 铁道学报,2013,35(9): 19-24. doi: 10.3969/j.issn.1001-8360.2013.09.004
GAN Feng, DAI Huanyun, GAO Hao, et al. Calculation of equivalent conicity and wheel-rail contact relationship of different railway vehicle treads[J]. Journal of the China Railway Society, 2013, 35(9): 19-24. doi: 10.3969/j.issn.1001-8360.2013.09.004
|
[1] | LI Yao, ZHANG Xiaoxia, GUO Jin, ZHANG Yadong. Testing Modeling Method for Safety Critical Function of High-Speed Railway Signal System[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 28-35, 45. doi: 10.3969/j.issn.0258-2724.20200378 |
[2] | LI Hongzhe, YAN Lianshan, CHEN Jianyi, LI Saifei, XU Sirun. Risk Assessment Method of High-Speed Railway Signal Systems Based on Threat Analysis[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1334-1341. doi: 10.3969/j.issn.0258-2724.20210113 |
[3] | XIE Shaofeng, SUN Jingdi, LUO Bingxiang, SU Peng, LI Jingwen. Mechanism of High-Speed Railway Interference on Power Cables of Adjacent Normal-Speed Railway[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 206-213. doi: 10.3969/j.issn.0258-2724.20191003 |
[4] | PENG Qiyuan, LI Jianguan, YANG Yuxiang, WEN Chao. Influences of High-Speed Railway Construction on Railway Transportation of China[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 525-533. doi: 10.3969/j.issn.0258-2724.2016.03.011 |
[5] | LI Saifei, YAN Lianshan, GUO Wei, GUO Jin, CHEN Jianyi, PAN Wei, FANG Xuming. Analysis of Network Security for Chinese High-Speed Railway Signal Systems and Proposal of Unified Security Control[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 478-484,503. doi: 10.3969/j.issn.0258-2724.2015.03.015 |
[6] | WANG Jing, WANG Dian-Hai, CHEN Song. Macro Planning of Highway Hubs Adapting to Changchun-Jilin High-Speed Railway Project[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 853-860. doi: 10.3969/j.issn.0258-2724.2011.05.024 |
[7] | QIU Yanjun, FANG Mingjing, ZHANG Xiaojing, WEI Yongxing. Dynamic Analysis of Structural Adaptivity of Ballastless Track Substructure of High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 183-187. doi: 10.3969/j.issn.0258-2724.2011.02.001 |
[8] | Wang- Beng, CHEN Rong, CHEN Xiao-Beng. Key Technologies in H igh-Speed Railway TurnoutDesign[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 28-33. doi: 10. 3969/.j issn. 0258-2724. 2 |
[9] | ZHANG Yadong, GUO Jin, SHAN Na. Comprehensive Evaluation of Risk Severity Level of Railway Signal System[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 759-763. doi: 10. 3969/ j. issn. 0258-2724. |
[10] | ZHAN Yongxiang, JIANG Guanlu, NIU Guohui, WEI Yongxing. Model Test Investigation of Pile-Plank Embankment of Ballastless Truck for High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2007, 20(4): 400-403,408. |
[11] | CAI Cheng-biao. Calculation of Additional Longitudinal Forces in Continuously Welded Rails on Supper-Large Bridges of High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 609-614. |
[12] | LENGJun-feng, LUFeng-shan, WANGMei-yun. Study on Forecast of the PassengerTraffic Volume ofHigh-Speed Railways[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 88-91. |
[13] | LIUhua. Study on Rational Distance between Stations of High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 245-249. |
1. | 谢泽,张可新,李金波. 高速铁路运营安全保障技防体系研究. 铁道运输与经济. 2024(07): 151-158 . ![]() | |
2. | 房刚. RBC系统智能运维关键技术研究. 铁路通信信号工程技术. 2024(08): 1-8 . ![]() | |
3. | 刘泓麟,吴云飞. 一种轨道交通信号设备的物理式故障监控装置. 信息记录材料. 2023(01): 17-19 . ![]() | |
4. | 姜珂,石建强,陈光武. 基于改进的YOLOv5s列车轨道线检测方法. 计算机科学. 2023(S2): 307-312 . ![]() | |
5. | 庞涛,李志伟,朱均超,张宝峰. 基于小波分析的铁路继电器时间参数测量方法. 仪表技术. 2022(04): 43-48 . ![]() | |
6. | 李正交,蔡伯根,杨吉,刘江. 基于双链路监测的地面应答器健康状态动态检测与评估. 铁道通信信号. 2021(03): 1-5+8 . ![]() | |
7. | 谢智多,孙瑞. 全电子联锁道岔模块复位控制系统的设计与实现. 铁道通信信号. 2021(07): 79-82+87 . ![]() | |
8. | 黄鲁江. 计算机联锁系统的自动化运维技术. 铁道通信信号. 2021(11): 18-21 . ![]() | |
9. | 刘子宽. 铁路电务信号设备的自动化控制技术研究. 机械管理开发. 2021(12): 318-319+322 . ![]() | |
10. | 尹航,梁玉琦,王成龙. 基于深度门控循环单元网络的转辙机健康状态评估. 铁道学报. 2021(11): 88-96 . ![]() | |
11. | 邓小斌. 中国铁路信号系统智能监测技术研究. 装备维修技术. 2020(01): 46-47 . ![]() | |
12. | 张硕. 基于数据挖掘的铁路信号设备故障自动诊断研究. 电气应用. 2020(06): 85-89 . ![]() | |
13. | 李正交,蔡伯根,刘江,陆德彪,朱林富,刘浩. 基于等效阻抗模型的应答器下行链路传输性能评估方法研究. 铁道学报. 2020(08): 85-92 . ![]() | |
14. | 廖理明,王鑫,林金强,江磊,王小敏. 基于GO-FLOW方法的转辙机部件预防性维修策略研究. 铁路计算机应用. 2020(10): 54-58+73 . ![]() | |
15. | 屈松林,刘林. 基于波形字典的铁路空口监测数据压缩算法. 计算机应用研究. 2020(S2): 266-269+244 . ![]() | |
16. | 张昕. 高速铁路提速道岔健康管理分析. 铁路通信信号工程技术. 2019(02): 80-83 . ![]() | |
17. | 喻喜平. 基于CAPSO-BPNN的铁路信号运行状态预警方法研究. 山东农业大学学报(自然科学版). 2019(02): 281-284 . ![]() | |
18. | 李瑜瑾,王茜. 广州地铁6号线车载设备通信连接中断故障分析. 现代城市轨道交通. 2019(05): 68-74 . ![]() | |
19. | 林刚. 基于大数据云计算的铁路智能运维系统技术研究. 铁道通信信号. 2019(05): 37-41 . ![]() | |
20. | 王彬. 铁路信号系统智能监测技术浅析. 数字通信世界. 2019(08): 107 . ![]() | |
21. | 郭碧,丁春平. 基于帧间差分累积的铁路限界异物检测提取算法. 铁道标准设计. 2019(09): 153-158 . ![]() | |
22. | 曹源,尤刚,罗轶溧,李军,周建. 基于移动应用的铁道信号智能监测系统. 铁路计算机应用. 2018(07): 64-69+74 . ![]() | |
23. | 张晋渊. 中国铁路信号系统智能监测技术. 科技创新导报. 2018(03): 7-8 . ![]() | |
24. | 董昱,郭碧. 基于Hu不变矩特征的铁路轨道识别检测算法. 铁道学报. 2018(10): 64-70 . ![]() | |
25. | 赵天舒. 智能高速铁路发展探究. 科学技术创新. 2018(34): 112-113 . ![]() | |
26. | 黄蕾. 基于道岔转辙机动作功率曲线关联分析道岔故障. 兵工自动化. 2017(10): 29-33 . ![]() | |
27. | 吴嫱. 中国铁路信号系统智能监测技术应用分析. 居舍. 2017(27): 159 . ![]() | |
28. | 史红卫,史慧,孙洁,白伟光. 服务于智能制造的智能检测技术探索与应用. 计算机测量与控制. 2017(01): 1-4+8 . ![]() | |
29. | 张勤福. 浅析我国铁路信号系统智能监测技术的应用. 山东工业技术. 2017(20): 132 . ![]() | |
30. | 谢智多,李刚. 电务实操智能考核系统设计方案与实现. 铁道通信信号. 2017(03): 46-48+53 . ![]() | |
31. | 蔡华林. 铁路信号机房环监功能实现与组网分析. 铁道通信信号. 2017(05): 21-23 . ![]() | |
32. | 王永江. 试论铁路信号设备维护中微机监测的应用. 科技创新与应用. 2016(18): 289 . ![]() | |
33. | 任荔娜. 基于DSP的铁路信号电源测控系统设计. 科技风. 2016(11): 170 . ![]() | |
34. | 蔡永寨. 浅析我国铁路信号系统智能监测技术的应用. 山东工业技术. 2016(07): 152 . ![]() | |
35. | 胡东成. 我国铁路信号系统智能监测技术探究. 通讯世界. 2016(17): 13 . ![]() | |
36. | 徐奕. 信号智能化电源屏的日常维护与检修. 智能城市. 2016(08): 62 . ![]() | |
37. | 黄立民,冯嘉腾. 浅析铁路信号系统智能监测技术的应用. 中小企业管理与科技(上旬刊). 2016(10): 141-142 . ![]() | |
38. | 宋豪杰,汪惠芬,刘庭煜. 数控机床远程维修维护系统平台设计. 制造业自动化. 2015(20): 120-124 . ![]() | |
39. | 郭亚龙. 我国铁路信号系统智能监测技术. 通讯世界. 2015(11): 49-50 . ![]() | |
40. | 李绍斌,李文涛. 一种新型的铁路智能信号控制系统设计与实现. 现代电子技术. 2015(14): 156-159+162 . ![]() | |
41. | 李赛飞,闫连山,郭伟,郭进,陈建译,潘炜,方旭明. 高速铁路信号系统网络安全与统一管控. 西南交通大学学报. 2015(03): 478-484+503 . ![]() | |
42. | 曹捷. 浅析铁路信号监测与现代信息技术的结合. 中国新技术新产品. 2015(07): 26 . ![]() |