• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
GUAN Qinghua, ZHAO Xin, WEN Zefeng, JIN Xuesong. Calculation Method of Hertz Normal Contact Stiffness[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 883-888. doi: 10.3969/j.issn.0258-2724.20210015
Citation: GUAN Qinghua, ZHAO Xin, WEN Zefeng, JIN Xuesong. Calculation Method of Hertz Normal Contact Stiffness[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 883-888. doi: 10.3969/j.issn.0258-2724.20210015

Calculation Method of Hertz Normal Contact Stiffness

doi: 10.3969/j.issn.0258-2724.20210015
  • Received Date: 11 Jan 2021
  • Rev Recd Date: 05 Mar 2021
  • Available Online: 12 Apr 2021
  • Publish Date: 15 Aug 2021
  • Elastic contact deformation between the wheel and rail is pivotal in the computation of the wheel-rail contact force in the vehicle-track coupled dynamics. Based on the Hertz contact theory, the nonlinear contact stiffness is used to depict the relation of the wheel-rail normal contact force and their relative compression. The current empirical formulas of the Hertz contact stiffness for the wheel-rail contact are based on the work of British Railway in 1970 s, and are classified into two categories, i.e., coned profile and worn profile. However, they are restricted to specific wheel radii and rail profiles. In this work, based on Hertz contact theory, the general formulas of the elastic normal contact stiffness are deduced, which can satisfy the Hertz contact conditions. According to the characteristics of the wheel-rail geometry, the dimension of wheel-rail contact spots and contact stiffness parameters are tabulated and determined. Finally, an example of LM wheel profile and CN60 rail profile is used to compare the results of the empirical formulas and those of the proposed formulas. The results show that the Hertz contact parameter table formed by the proposed contact formula makes up the absence of the contact stiffness in the current ones, and can be used directly in elastic contact calculation. When the circle around the nominal center of the wheel profile and the central circle of the rail head are in contact, the results calculated by empirical formulas have less error in the contact stiffness deviation of the worn tread, which varies in 0.40% − 0.44%. Otherwise, there is a significant difference between the results of empirical formulas and those of the proposed formulas, the range of which is −25.97% −131.42%.

     

  • ZHAI Wanming. Vehicle-track coupled dynamics: theory and application[M]. Singapore: Science Press and Springer Nature Singapore Pte Ltd., 2020.
    金学松, 刘启跃. 轮轨摩擦学[M]. 北京: 中国铁道出版社, 2004: 47-63.
    GOLDSMITH W. Impact: the theory and physical behavior of colliding solids[M]. New York: Dover Publications, Inc., 2001: 82-87.
    张鹏,赵鑫,凌亮,等. 轮轨高频动力作用模拟中接触模型的影响分析[J]. 机械工程学报,2020,56(12): 124-132. doi: 10.3901/JME.2020.12.124

    ZHANG Peng, ZHAO Xin, LING Liang, et al. Influence of contact modeling on numerical analyses of high frequency wheel-rail interactions[J]. Journal of Mechanical Engineering, 2020, 56(12): 124-132. doi: 10.3901/JME.2020.12.124
    徐井芒,王凯,高原,等. 高速铁路无缝钢轨断缝瞬态冲击行为分析[J]. 西南交通大学学报,2020,55(6): 1348-1354. doi: 10.3969/j.issn.0258-2724.20190312

    XU Jingmang, WANG Kai, GAO Yuan, et al. Transient impact behavior analysis of rail broken gap on high-speed continuous welded rail[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1348-1354. doi: 10.3969/j.issn.0258-2724.20190312
    CHENG Gong, HE Yuanpeng, HAN Jian, et al. An investigation into the effects of modelling assumptions on sound power radiated from a high-speed train wheelset[J]. Journal of Sound and Vibration, 2021, 495: 115910.1-115910.20.
    JENKINS H H, STEPHENSON J E, CLAYTON G A, et al. The effect of track and vehicle parameters on wheel/rail vertical dynamic forces[J]. Railway Engineering Journal, 1974, 3(1): 2-16.
    孙翔. 确定轮轨接触椭圆的直接方法[J]. 西南交通大学学报,1985(4): 8-21.

    SUN Xiang. A direct method to determine the wheel/rail contact ellipse[J]. Journal of Southwest Jiaotong University, 1985(4): 8-21.
    JOHNSON K L. Contact mechanics[M]. Cambridge: Cambridge University Press, 1985: 119-124.
    SHABANA A A, ZAAZAA K E, ESCALONA J L, et al. Development of elastic force model for wheel/rail contact problems[J]. Journal of Sound and Vibration, 2004, 269(1/2): 295-325.
    FLORES P, AMBROSIO J, CLARO J C P, et al. Influence of the contact-impact force model on the dynamic response of multi-body systems[J]. Proceedings of the Institution of Mechanical Engineering,Part K:Journal of Multi-Body Dynamics, 2006, 220(1): 21-34. doi: 10.1243/146441906X77722
    SKRINJAR L, SLAVIC J, BOLTEZAR M. A review of continuous contact-force models in multibody dynamics[J]. International Journal of Mechanical Sciences, 2018, 145: 171-187. doi: 10.1016/j.ijmecsci.2018.07.010
    HU S, GUO X. A dissipative contact force model for impact analysis in multibody dynamics[J]. Multibody System Dynamics, 2015, 35: 131-151. doi: 10.1007/s11044-015-9453-z
    ZHANG J, LI W, ZHAO L, et al. A continuous contact force model for impact analysis in multibody dynamics[J]. Mechanism and Machine Theory, 2020, 153: 103946.1-103946.25.
    ISMAIL K A, STRONGE W J. Impact of viscoplastic bodies:dissipation and restitution[J]. Journal of Applied Mechanics, 2008, 75: 061011-1-061011-5.
    YIGIT A S, CHRISTOFOROU A P, MAJEED M A. A nonlinear visco-elastoplastic impact model and the coefficient of restitution[J]. Nonlinear Dynamics, 2011, 66: 509-521. doi: 10.1007/s11071-010-9929-6
  • Cited by

    Periodical cited type(17)

    1. 段忠辉,王脉,章慧健,赵岩,霍思逊,郑余朝. 不同加固方式下的软硬过渡段隧道基底受列车动载影响规律. 科学技术与工程. 2024(02): 773-781 .
    2. 王成琪,金潇,王令军,巩译泽,杨宜坤. ADI辐条车轮的轮轨接触行为特性计算分析. 轨道交通材料. 2024(04): 1-5 .
    3. 胡文涛,周燕昆,杨卓澄,万方,王国风,胡文杰. 温度对航空计量活门摩擦特性影响研究. 机床与液压. 2024(20): 79-83 .
    4. 李硕,曹彦生,张韬懿. 重力自降型多级薄壁伸缩臂机构设计及寿命评估. 机床与液压. 2024(22): 110-115 .
    5. 杨宜坤,刘林,申震,王成琪. 奥贝球铁材料辐条车轮刚柔耦合动力学仿真研究. 系统仿真技术. 2024(03): 230-236 .
    6. 何泽银,易锋,杨震,伍宏健,裴世丰. 计入冲击与受载齿轮副时变啮合刚度解析算法. 湖南大学学报(自然科学版). 2024(12): 38-46 .
    7. 杨飞,郝晓莉,杨建,孙宪夫,高彦嵩,张煜. 基于多车型CNN-GRU性能预测模型的轨道状态评价. 西南交通大学学报. 2023(02): 322-331 . 本站查看
    8. 章慧健,牛晓宇,刘功宁,刘秋阳,苗龙刚,刘伟雄. 既有地铁列车振动荷载下密贴下穿通道的动力响应特性研究. 岩石力学与工程学报. 2023(05): 1273-1286 .
    9. 董雅宏,曹树谦. 车轮高阶多边形磨耗发生与演化特征分析. 西南交通大学学报. 2023(03): 665-676 . 本站查看
    10. 鲁昌霖,王志伟,王权,莫继良. 考虑轮轨蠕滑的高速列车制动非线性振动行为研究. 重庆理工大学学报(自然科学). 2023(06): 10-19 .
    11. 张波,杨云帆,凌亮,王开云. 车轮多边形对重载机车轮轨相互作用及接触损伤的影响分析. 西南交通大学学报. 2023(06): 1339-1346 . 本站查看
    12. 杜星,陶功权,杨城,温泽峰,金学松,吴军. 轨底坡变化对高速车辆运行行为的影响. 西南交通大学学报. 2022(02): 286-294 . 本站查看
    13. 李科宏,王佳,何庆中,赖镜安,赵苾通,左超,何润东. 余热锅炉沉降室内烟道磨损特性研究. 科学技术与工程. 2022(12): 4812-4819 .
    14. 方凌昊,关庆华,温泽峰. 轴箱内、外置车辆轮轴弯曲对轮轨接触的影响. 中南大学学报(自然科学版). 2022(08): 3259-3269 .
    15. 何建明,黄志辉,姜旭涛,宋杨法. 400 km/h变轨距转向架轮轴结构变形及车轴-滑动轴承接触应力分析. 机车电传动. 2022(04): 17-25 .
    16. 潘高,王雪梅,倪文波,丁军君. 基于超声波的轮轨接触斑及应力检测系统研究. 铁道科学与工程学报. 2022(09): 2720-2729 .
    17. 胡若邻,冯杜炀,白立军,刘东平,方东,赵永正. 盾构区间内置式废水泵房轨道动力学分析. 现代隧道技术. 2021(S2): 73-80 .

    Other cited types(33)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(1057) PDF downloads(528) Cited by(50)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return