• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
QIU Yanjun, WANG Guolong, YANG Enhui, YU Xiaoli, WANG Chenping. Crack Detection of 3D Asphalt Pavement Based on Multi-feature Test[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 518-524. doi: 10.3969/j.issn.0258-2724.20180270
Citation: CAO Lilin, CAO Dong, YU Guojun, LI Aiqun. Random Walking Crowd Model Considering Pedestrian Synchronization Rate[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 495-501. doi: 10.3969/j.issn.0258-2724.20180656

Random Walking Crowd Model Considering Pedestrian Synchronization Rate

doi: 10.3969/j.issn.0258-2724.20180656
  • Received Date: 03 Aug 2018
  • Rev Recd Date: 02 Jan 2019
  • Available Online: 11 Jan 2019
  • Publish Date: 01 Jun 2020
  • In order to study the influence of walking crowd synergy on the human-induced vibration of structures, the vertical vibration of a footbridge under the action of walking crowd was analyzed using the random walking crowd model considering pedestrian synchronization rate. Firstly, a random walking crowd centralized model and discrete model considering pedestrian synchronization rate were proposed by random analysis of the walking crowd. Secondly, a method for vertical vibration response analysis of structure subjected to random walking crowd was established by considering the vertical coupling effect between human and structure under the two models. Finally, change rules of vertical acceleration responses and dynamic characteristic parameters of the footbridge under the two different random walking crowd models were compared and analyzed. Results show that the 1-s root-mean-square (RMS) acceleration responses of the footbridge under the two pedestrian walking models both increase first and then decrease with the crowd density increasing. Beyond the crowd density of 0.2 person/m2, the 1-s RMS acceleration of the footbridge in the random walking crowd discrete model is greater than that in the centralized model, and increasing the pedestrian spacing in the synchronization zone of the centralized model is beneficial to reducing structural vibration responses. As crowd density increases, the instantaneous frequency of footbridge decreases constantly; the instantaneous damping ratio of the footbridge increases first and then decreases, with a maximum 6-fold and 7-fold increase under the centralized model and the discrete model, respectively. In short, the random walking crowd model considering pedestrian synchronization rate can accurately reflect the actual crowd walking load of footbridges and therefore provide reference for the analysis and evaluation of human-induced vibration responses of footbridges.

     

  • 马斐,张志强,张晓峰,等. 高铁站房大跨钢楼盖行车和人群荷载激励下振动响应实测与分析[J]. 建筑结构学报,2018,39(1): 109-119.

    MA Fei, ZHANG Zhiqiang, ZHANG Xiaofeng, et al. Vibration response measurement and analysis of large-span steel floor structure at high-speed rail station under moving train and crowd excitation[J]. Journal of Building Structures, 2018, 39(1): 109-119.
    ZHANG S, XU L, QIN J. Vibration of lightweight steel floor systems with occupants:modelling,formulation and dynamic properties[J]. Engineering Structures, 2017, 147: 652-665. doi: 10.1016/j.engstruct.2017.06.008
    谢伟平,冯金鹏,何卫. 基于自激励人体模型的人-结构竖向相互作用研究[J]. 振动与冲击,2017,36(21): 28-33.

    XIE Weiping, FENG Jinpeng, HE Wei. Vertical human-structure interaction based on a self-exciting human model[J]. Journal of Vibration and Shock, 2017, 36(21): 28-33.
    操礼林,曹栋,于国军. 人-结构竖向相互作用两类简化模型分析[J]. 西南交通大学学报,2018,53(6): 1166-1172. doi: 10.3969/j.issn.0258-2724.2012.06.003

    CAO Lilin, CAO Dong, YU Guojun. Two simplified models for human-structure vertical interaction[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1166-1172. doi: 10.3969/j.issn.0258-2724.2012.06.003
    VAN NIMMEN K, LOMBAERT G, DE ROECK G, et al. Vibration serviceability of footbridges:evalua-tion of the current codes of practice[J]. Engineering Structures, 2014, 59: 448-461. doi: 10.1016/j.engstruct.2013.11.006
    RACIC V, PAVIC A, BROWNJOHN J M W. Experimental identification and analytical modelling of human walking forces:literature review[J]. Journal of Sound and Vibration, 2009, 326(1): 1-49.
    VENUTI F, RACIC V, CORBETTA A. Modelling framework for dynamic interaction between multiple pedestrians and vertical vibrations of footbridges[J]. Journal of Sound and Vibration, 2016, 379: 245-263. doi: 10.1016/j.jsv.2016.05.047
    KASPERSKI M. Realistic simulation of a random pedestrian flow[J]. Procedia Engineering, 2017, 199: 2814-2819. doi: 10.1016/j.proeng.2017.09.341
    罗鹏. 大跨楼盖结构人群荷载模拟及振动响应分析[D]. 南京: 东南大学土木工程学院, 2015.
    朱前坤,刘路路,杜永峰,等. 考虑行人-结构相互作用的悬挑钢筋桁架楼承板振动控制研究[J]. 建筑结构学报,2018,39(1): 99-108.

    ZHU Qiankun, LIU Lulu, DU Yongfeng, et al. Human-induced vibration and control for cantilever steel bartruss deck slab based on pedestrain-structure interaction[J]. Journal of Building Structures, 2018, 39(1): 99-108.
    陈隽. 人致荷载研究综述[J]. 振动与冲击,2017,36(23): 1-9.

    CHEN Jun. A review of human- induced loads study[J]. Journal of Vibration and Shock, 2017, 36(23): 1-9.
    VENUTI F, BRUNO L. An interpretative model of the pedestrian fundamental relation[J]. Comptes Rendus Mécanique, 2007, 335(4): 194-200. doi: 10.1016/j.crme.2007.03.008
    操礼林. 高铁候车厅大跨楼盖人致振动响应分析与减振控制研究[D]. 南京: 东南大学, 2016.
    CAPRANI C C, KEOGH J, ARCHBOLD P, et al. Enhancement factors for the vertical response of footbridges subjected to stochastic crowd loading[J]. Computers & Structures, 2012, 102/103(1): 87-96.
    杨予,杨云芳,洪震,等. 人体站姿竖向振动等效单自由度模型参数研究[J]. 振动与冲击,2012,31(23): 154-157. doi: 10.3969/j.issn.1000-3835.2012.23.029

    YANG Yu, YANG Yunfang, HONG Zhen, et al. Parameters of an equivalent SDOF vertical model for a standing human body[J]. Journal of Vibration and Shock, 2012, 31(23): 154-157. doi: 10.3969/j.issn.1000-3835.2012.23.029
  • Relative Articles

    [1]ZHANG Hong, JIANG Xiaogang, ZHU Zhiwei, XIA Runchuan, ZHOU Jianting. Review on Intelligent Image Recognition of Apparent Diseases of Stay Cable[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 10-26. doi: 10.3969/j.issn.0258-2724.20220647
    [2]XIE Mingzhi, FAN Dingmeng, JIANG Zhipeng, DENG Fei, WANG Kun, HAN Chen, YANG Yongqing. Research Status and Prospects of Computer Vision-Based Crack Detection of Concrete Structure[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240115
    [3]WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092
    [4]ZHOU Ning, WANG Jundong, LIU Yueping, YANG Xuan, LI Yan, WU Zaixin, ZHANG Weihua. Image Processing Based Method for Measuring Contact Force in Pantograph-Catenary System[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 1-8, 57. doi: 10.3969/j.issn.0258-2724.20210509
    [5]LENG Biao, ZHANG Yi, YANG Hui, HOU Gaopeng. Rapid Recognition of Rock Mass Fractures in Tunnel Faces[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 246-252, 322. doi: 10.3969/j.issn.0258-2724.20190749
    [6]FAN Xinnan, WANG Jie, SHI Pengfei, LI Min. Pavement Crack Segmentation Algorithm Based on Pulse Coupled Neural Network with Brainstorming Optimization[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 572-578. doi: 10.3969/j.issn.0258-2724.20190354
    [7]WU Bo, WANG Qi, LIAO Haili, LI Yulin. Direct Identification of Coefficients of Rational Function Approximation for Self-Excited Aerodynamic Forces[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 247-255. doi: 10.3969/j.issn.0258-2724.20180593
    [8]LUO Wenting, LI Zhongyi, LI Lin, GAN Hong, GUO Jiangang. Automated Lane Marking Identification Based on Improved Canny Edge Detection Algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1253-1260. doi: 10.3969/j.issn.0258-2724.2018.06.022
    [9]CHEN De, HAN Sen, SU Qian. Study on Design Parameters of Aggregate Based on Surface Texture Characteristic of HMA[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 943-948. doi: 10.3969/j.issn.0258-2724.2017.05.014
    [10]YANG Enhui, ZHANG Aonan, DING Shihai, WANG Kelvin C. P.. Automatic Detection Method for Highway Pavement Cracking Based on the 3D Shadow Modeling[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 288-294. doi: 10.3969/j.issn.0258-2724.2017.02.011
    [11]LIU Junqing, LI Qian, WANG Baoshi. Numerical Model of Asphalt Pavement Considering Transversely Isotropic Fatigue Damage[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 670-676. doi: 10.3969/j.issn.0258-2724.2016.04.010
    [12]LIU Yamin, HAN Sen, XU Ouming. Acquisition System for Three-Dimensional Surface Texture of Asphalt Pavement Based on Digital Image Processing[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 351-357. doi: 10.3969/j.issn.0258-2724.2014.02.025
    [13]PENG Bo, WANG Kelvin C.P., CHEN Cheng, JIANG Yangsheng. 3D Pavement Crack Image Detection Based on Anisotropy Measure[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 888-895. doi: 10.3969/j.issn.0258-2724.2014.05.023
    [14]BANG Dao-Beng, HUANG Chao, Aaron PACKMAN. Three-Dimensional Visualization of Arsenic Aggregates in Porous Media[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 973-978. doi: 10.3969/j.issn.0258-2724.2011.06.014
    [15]LI Hengjian, YIN Zhongke, ZHANG Jiashu, WANG Jianying. Image Sparse Decomposition Based on Particle Swarm Optimization with Chaotic Mutation[J]. Journal of Southwest Jiaotong University, 2008, 21(4): 509-513.
    [16]PENG Qiang, ZHANG Xiaofei. Feature Vector-Based Nude Picture Detection[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 13-18.
    [17]LI Hengjian, YIN Zhongke, WANG Jianying. Image Sparse Decomposition Based on Quantum Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 19-23.
    [18]WANGHong-xia, LUO Jian. SelfadaptiveW atermarking Synchrorization Scheme Based on Image Connectivity[J]. Journal of Southwest Jiaotong University, 2005, 18(6): 720-726.
    [19]HAO Yong-jie, LIUWen-yao, LUShuo. Spatial Correction of the Distorted License Plate Image of Automobiles[J]. Journal of Southwest Jiaotong University, 2002, 15(4): 417-420.
    [20]YANG Tian-wu, LIU Rong, PENG Qiang. Real-Time Video Technologies for MS-Windows[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 172-176.
  • Cited by

    Periodical cited type(9)

    1. 钟洪卫,陈桂梅. 公路沥青路面裂缝检测方法及处治措施研究. 城市建设理论研究(电子版). 2024(11): 151-153 .
    2. 丁鹏,邹晔,郭祥龙,陈珣,鲁福硕. 复杂环境下多传感器信息融合的无人驾驶汽车智能悬架自动控制方法. 汽车安全与节能学报. 2023(03): 355-364 .
    3. 张恩华,王卫杰,段楠,康楠. 基于YOLOv5的湿润沥青路面裂缝检测. 计算机科学. 2023(S2): 396-400 .
    4. 徐康,马荣贵. 基于改进Faster-RCNN的沥青路面裂缝检测. 计算机系统应用. 2022(07): 341-348 .
    5. 李鹏程,孙立双,谢志伟,单佳强. 基于改进MobileNet-SSD的路面裂缝图像检测算法. 激光杂志. 2022(07): 123-127 .
    6. 韦春桃,朱旭阳,张冬梅. 基于深度分类的轻量级格网桥梁裂缝检测技术. 计算机工程与设计. 2022(08): 2334-2341 .
    7. 陈健昌,张志华. 融于图像多特征的路面裂缝智能化识别. 科学技术与工程. 2021(24): 10491-10497 .
    8. 封筠,赵颖,毕健康,赖柏江,胡晶晶. 多级卷积神经网络的沥青路面裂缝图像层次化筛选. 图学学报. 2021(05): 719-728 .
    9. 孙朝云,马志丹,李伟,郝雪丽,申浩. 基于深度卷积神经网络融合模型的路面裂缝识别方法. 长安大学学报(自然科学版). 2020(04): 1-13 .

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.9 %FULLTEXT: 29.9 %META: 63.6 %META: 63.6 %PDF: 6.5 %PDF: 6.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.8 %其他: 8.8 %其他: 0.4 %其他: 0.4 %Central District: 0.6 %Central District: 0.6 %China: 0.7 %China: 0.7 %Richardson: 0.4 %Richardson: 0.4 %上海: 0.6 %上海: 0.6 %东莞: 2.6 %东莞: 2.6 %临汾: 0.3 %临汾: 0.3 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %北京: 3.6 %北京: 3.6 %南京: 1.4 %南京: 1.4 %厦门: 0.7 %厦门: 0.7 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.4 %大连: 0.4 %天津: 1.7 %天津: 1.7 %安阳: 0.3 %安阳: 0.3 %宣城: 0.1 %宣城: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 2.5 %张家口: 2.5 %徐州: 0.1 %徐州: 0.1 %成都: 2.2 %成都: 2.2 %扬州: 0.3 %扬州: 0.3 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.6 %杭州: 2.6 %武汉: 0.6 %武汉: 0.6 %池州: 1.2 %池州: 1.2 %济南: 0.4 %济南: 0.4 %深圳: 1.0 %深圳: 1.0 %漯河: 0.7 %漯河: 0.7 %石家庄: 2.5 %石家庄: 2.5 %石河子: 0.1 %石河子: 0.1 %芒廷维尤: 14.2 %芒廷维尤: 14.2 %芜湖: 0.3 %芜湖: 0.3 %芝加哥: 0.7 %芝加哥: 0.7 %衡阳: 0.1 %衡阳: 0.1 %西宁: 35.9 %西宁: 35.9 %西安: 2.2 %西安: 2.2 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.7 %运城: 0.7 %连云港: 0.3 %连云港: 0.3 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.3 %郑州: 0.3 %重庆: 1.7 %重庆: 1.7 %长沙: 2.9 %长沙: 2.9 %青岛: 1.0 %青岛: 1.0 %其他其他Central DistrictChinaRichardson上海东莞临汾佛山保定北京南京厦门哈尔滨哥伦布嘉兴大连天津安阳宣城广州张家口徐州成都扬州新乡无锡昆明朝阳杭州武汉池州济南深圳漯河石家庄石河子芒廷维尤芜湖芝加哥衡阳西宁西安贵阳达州运城连云港邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article views(684) PDF downloads(21) Cited by(26)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return