• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LENG Biao, ZHANG Yi, YANG Hui, HOU Gaopeng. Rapid Recognition of Rock Mass Fractures in Tunnel Faces[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 246-252, 322. doi: 10.3969/j.issn.0258-2724.20190749
Citation: LENG Biao, ZHANG Yi, YANG Hui, HOU Gaopeng. Rapid Recognition of Rock Mass Fractures in Tunnel Faces[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 246-252, 322. doi: 10.3969/j.issn.0258-2724.20190749

Rapid Recognition of Rock Mass Fractures in Tunnel Faces

doi: 10.3969/j.issn.0258-2724.20190749
  • Received Date: 30 Jul 2019
  • Rev Recd Date: 26 Sep 2019
  • Available Online: 09 Oct 2019
  • Publish Date: 15 Apr 2021
  • Tunnel faces contain much geological information, which, if fully extracted and analyzed, will help to evaluate the geological state of tunnel engineering and guide tunnel design and construction. In this paper, rock mass crack detection, extraction and grouping algorithms of the tunnel face are studied on the basis of the tunnel face image. First, the image segmentation algorithm for face rock mass cracks is analyzed using digital image processing technology. According to the segmentation results, the discontinuous boundaries are connected and the short boundaries are filtered through image thinning and boundary fitting, separation, merging and filtering to form a relatively complete recognition result of rock mass boundary lines. Then, the apparent dip angle of rock mass boundary line is calculated, and the boundary lines with similar apparent dips are merged into a group to achieve automatic grouping. This method is applied to real tunnel face images to test its effectiveness. Results show that the proposed method can basically realize automatic extraction and grouping of the rock mass cracks in the funnel face. For rock masses with obvious cracks, the algorithm can extract the cracks with an error rate of more than 10% and implement automatic grouping with an error rate of no and 5%. This method improves automation degree of rock mass analysis of the tunnel face, and can be used for geological sketching map, providing references for the surrounding rock classification of tunnel faces.

     

  • 李术才,刘洪亮,李利平,等. 基于数码图像的掌子面岩体结构量化表征方法及工程应用[J]. 岩石力学与工程学报,2017,36(1): 1-9.

    LI Shucai, LIU Hongliang, LI Liping, et al. A quantitative method for rock structure at working faces of tunnels based on digital images and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 1-9.
    LEU S S, CHANG S L. Digital image processing based approach for tunnel excavation faces[J]. Automation in Construction, 2005, 14: 750-765. doi: 10.1016/j.autcon.2005.02.004
    周春霖, 朱合华, 李晓军. 新奥法施工隧道掌子面红外照相及图像处理[J]. 岩石力学与工程学报, 2008, 27(增刊1): 3166-3172.

    ZHOU Chunlin, ZHU Hehua, LI Xiaojun. Application of infrared photography and image processing to tunnel construction with new austrian tunneling method[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 3166-3172.
    李鹏云,赵科,陈孜迪,等. 基于图像处理的隧道掌子面地质构造信息提取研究[J]. 土木建筑工程信息技术,2017,9(6): 67-72.

    LI Pengyun, ZHAO Ke, CHEN Zidi, et al. Research on extraction of geological structure information of tunnel excavation faces based on image processing[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2017, 9(6): 67-72.
    范留明,李宁. 基于数码摄影技术的岩体裂隙测量方法初探[J]. 岩石力学与工程学报,2005,24(5): 792-797. doi: 10.3321/j.issn:1000-6915.2005.05.010

    FAN Liuming, LI Ning. Study on rck mass joint measurement based on digital photogrammetry[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 792-797. doi: 10.3321/j.issn:1000-6915.2005.05.010
    罗佳,刘大刚. 围岩结构面发育程度参数的图像处理技术研究[J]. 计算机科学与工程,2013,35(4): 75-80.

    LUO Jia, LIU Dagang. Research on image processing technology of developmental degree parameters of surrounding rock structure[J]. Computer Science and Engineering, 2013, 35(4): 75-80.
    叶英,王梦恕. 隧道掌子面地质信息数字编录识别技术研究[J]. 北京交通大学学报,2007,31(1): 59-62. doi: 10.3969/j.issn.1673-0291.2007.01.014

    YE Ying, WANG Mengshu. Research on digital catalogue identification technology of geological information in tunnel face[J]. Journal of Beijing Jiaotong University, 2007, 31(1): 59-62. doi: 10.3969/j.issn.1673-0291.2007.01.014
    胡刚,金乾坤. 岩体天然裂隙计算机图像处理技术研究[J]. 有色金属(矿山部分),2004,56(5): 39-40. doi: 10.3969/j.issn.1671-4172.2004.05.015

    HU Gang, JIN Qiankun. Research on computer image processing technology of natural fracture in rock mass[J]. Nonferrous Metals (Mineral Part), 2004, 56(5): 39-40. doi: 10.3969/j.issn.1671-4172.2004.05.015
    李弼程, 彭天强, 彭波, 等. 智能图像处理技术[M]. 北京: 电子工业出版社, 2004: 153.
    CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
    章毓晋. 图像工程——图像处理和分析(上册)[M]. 北京: 清华大学出版社, 1999: 221-222.
  • Relative Articles

    [1]ZHANG Hong, JIANG Xiaogang, ZHU Zhiwei, XIA Runchuan, ZHOU Jianting. Review on Intelligent Image Recognition of Apparent Diseases of Stay Cable[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 10-26. doi: 10.3969/j.issn.0258-2724.20220647
    [2]WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092
    [3]ZHOU Ning, WANG Jundong, LIU Yueping, YANG Xuan, LI Yan, WU Zaixin, ZHANG Weihua. Image Processing Based Method for Measuring Contact Force in Pantograph-Catenary System[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 1-8, 57. doi: 10.3969/j.issn.0258-2724.20210509
    [4]XIA Yimin, LI Qingyou, DENG Chaohui, LONG Bin, YAO Jie. Rapid Identification Method for Lithology of Tunnel Based on Lightweight Model[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 420-427. doi: 10.3969/j.issn.0258-2724.20191057
    [5]FAN Hong, HOU Yun, LI Bailin, XIONG Ying. Adaptive Detection Algorithm for High-Speed Railway Fasteners by Vision[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 896-902. doi: 10.3969/j.issn.0258-2724.20180496
    [6]XIANG Yu, CONG Deming, ZHANG Yang, YUAN Fei. Two-Stream Neural Network Fusion Model for Highway Fog Detection[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 173-179. doi: 10.3969/j.issn.0258-2724.20180205
    [7]ZHANG Changli, MENG Ying, LI Pengchao, SUN Ting. Monitoring Video-Based Visibility Detection Method and System for Highways in China[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 136-145. doi: 10.3969/j.issn.0258-2724.2018.01.017
    [8]LUO Wenting, LI Zhongyi, LI Lin, GAN Hong, GUO Jiangang. Automated Lane Marking Identification Based on Improved Canny Edge Detection Algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1253-1260. doi: 10.3969/j.issn.0258-2724.2018.06.022
    [9]CHEN De, HAN Sen, SU Qian. Study on Design Parameters of Aggregate Based on Surface Texture Characteristic of HMA[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 943-948. doi: 10.3969/j.issn.0258-2724.2017.05.014
    [10]YU Ming, WANG Yingzi, YU Yang, LIU Yi. Micro-expression Recognition Based on Differential Energy Maps and CGBP[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1222-1229. doi: 10.3969/j.issn.0258-2724.2016.06.024
    [11]PENG Bo, WANG Kelvin C.P., CHEN Cheng, JIANG Yangsheng. 3D Pavement Crack Image Detection Based on Anisotropy Measure[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 888-895. doi: 10.3969/j.issn.0258-2724.2014.05.023
    [12]BANG Dao-Beng, HUANG Chao, Aaron PACKMAN. Three-Dimensional Visualization of Arsenic Aggregates in Porous Media[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 973-978. doi: 10.3969/j.issn.0258-2724.2011.06.014
    [13]LI Hengjian, YIN Zhongke, ZHANG Jiashu, WANG Jianying. Image Sparse Decomposition Based on Particle Swarm Optimization with Chaotic Mutation[J]. Journal of Southwest Jiaotong University, 2008, 21(4): 509-513.
    [14]PENG Qiang, ZHANG Xiaofei. Feature Vector-Based Nude Picture Detection[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 13-18.
    [15]LI Hengjian, YIN Zhongke, WANG Jianying. Image Sparse Decomposition Based on Quantum Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 19-23.
    [16]WANGHong-xia, LUO Jian. SelfadaptiveW atermarking Synchrorization Scheme Based on Image Connectivity[J]. Journal of Southwest Jiaotong University, 2005, 18(6): 720-726.
    [17]HE You-quan, FANGLei. Computer Transmission and Processing of Medical Images[J]. Journal of Southwest Jiaotong University, 2003, 16(3): 267-270.
    [18]HAO Yong-jie, LIUWen-yao, LUShuo. Spatial Correction of the Distorted License Plate Image of Automobiles[J]. Journal of Southwest Jiaotong University, 2002, 15(4): 417-420.
    [19]YANG Tian-wu, LIU Rong, PENG Qiang. Real-Time Video Technologies for MS-Windows[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 172-176.
  • Cited by

    Periodical cited type(17)

    1. 林鹏,夏覃永,孙鸿强,彭鑫,王明年. 基于改进Swin Transformer与多模型融合的结构面几何参数解析方法. 隧道建设(中英文). 2025(01): 159-170 .
    2. 贺鹏,安婕,石少帅,胡杰,吴威涛,闫志强. 基于节理岩体多尺度建模方法的隧道块体垮塌失稳特征与支护优化设计研究. 岩石力学与工程学报. 2025(05): 1204-1218 .
    3. 张运波,雷明锋,肖勇卓,刘光辉,邓兴兴,杨富宇,鲁宝金,李重阳. 隧道掌子面节理卷积神经网络智能识别方法. 中国公路学报. 2024(07): 35-45 .
    4. 李利平,邹浩,刘洪亮,屠文锋,陈雨雪. 钻爆法隧道智能建造研究现状与发展趋势. 中国公路学报. 2024(07): 1-21 .
    5. 吴顺川,孙贝贝,余一松,王勇兵. 考虑几何特征的岩体裂隙迹线多尺度图像识别方法. 华中科技大学学报(自然科学版). 2024(09): 101-109+117 .
    6. 闫志强,姜枫,贺鹏,王刚,麻正虎,杨传馨,郭伟东,赵瑞杰. 隧道施工期掌子面岩体结构信息最佳获取时机探究(英文). Applied Geophysics. 2024(04): 820-834+881-882 .
    7. 伍法权,夏毓,何林恺. 基于采样窗的岩体裂隙图像信息检测方法研究. 工程地质学报. 2024(06): 2064-2071 .
    8. 吴顺川,孙贝贝,吴金,张朝俊. 双像解译的结构面迹线产状测量方法. 矿业研究与开发. 2023(01): 127-134 .
    9. 罗虎,Miller Mark,张睿,方勇. 基于计算机视觉技术和深度学习的隧道掌子面岩体裂隙自动识别方法研究. 现代隧道技术. 2023(01): 56-65 .
    10. 彭磊,周春,胡锋,田晓阳,王海波. 基于深度学习的隧道掌子面节理智能检测与分割. 人民长江. 2023(10): 243-250 .
    11. 高洪飞,杨仁松,张运波,肖勇卓,丁家浩,雷明锋. 基于增强Mask RCNN算法的隧道掌子面节理智能识别方法与应用. 工业建筑. 2023(S2): 583-587 .
    12. 卢振龙,宋冠先,梁铭,韩玉,朱孟龙,彭浩,严胜杰,卢晓晓,董宏源. 考虑岩体非均质性的隧道掌子面图像分级方法. 公路. 2023(12): 399-406 .
    13. 朱合华,潘柄屹,武威,黄勇,刘剑,李华明. 岩体结构面信息采集及识别方法研究进展. 应用基础与工程科学学报. 2023(06): 1339-1360 .
    14. 李华明,张可珅,潘柄屹,龙平江,刘剑. 隧道围岩几何信息自动提取方法及工程应用. 公路交通科技. 2023(12): 154-162 .
    15. 王军祥,曾相森,徐晨晖,崔宁坤. 基于图像处理技术的岩体裂隙定量识别方法研究. 地下空间与工程学报. 2022(02): 446-457 .
    16. 高祥,高亚楠. 基于光反射率突变的受力岩石裂纹提取方法. 工矿自动化. 2022(08): 76-84 .
    17. 杨剑. 基于三维点云的隧道施工开挖面岩体结构面迹线识别. 铁道标准设计. 2021(06): 108-113 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-07010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 41.8 %FULLTEXT: 41.8 %META: 49.7 %META: 49.7 %PDF: 8.4 %PDF: 8.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.0 %其他: 12.0 %其他: 0.7 %其他: 0.7 %Absecon: 0.5 %Absecon: 0.5 %Ban Bo: 0.3 %Ban Bo: 0.3 %China: 0.2 %China: 0.2 %Malaysia: 0.3 %Malaysia: 0.3 %Nepal: 0.3 %Nepal: 0.3 %[]: 0.1 %[]: 0.1 %上海: 1.3 %上海: 1.3 %东京: 0.3 %东京: 0.3 %东莞: 1.0 %东莞: 1.0 %临汾: 0.2 %临汾: 0.2 %丽水: 0.1 %丽水: 0.1 %佛山: 0.2 %佛山: 0.2 %俄罗斯伏尔加格勒: 0.1 %俄罗斯伏尔加格勒: 0.1 %北京: 4.9 %北京: 4.9 %十堰: 0.1 %十堰: 0.1 %南京: 0.5 %南京: 0.5 %南通: 0.1 %南通: 0.1 %厦门: 0.3 %厦门: 0.3 %合肥: 0.2 %合肥: 0.2 %周口: 0.2 %周口: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.6 %哥伦布: 0.6 %大庆: 0.1 %大庆: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.8 %天津: 0.8 %太原: 0.3 %太原: 0.3 %宁波: 0.1 %宁波: 0.1 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.5 %宣城: 0.5 %山景城: 0.4 %山景城: 0.4 %崇左: 0.1 %崇左: 0.1 %广安: 0.1 %广安: 0.1 %广州: 0.3 %广州: 0.3 %延安: 0.3 %延安: 0.3 %张家口: 2.1 %张家口: 2.1 %徐州: 0.2 %徐州: 0.2 %成都: 3.8 %成都: 3.8 %扬州: 0.6 %扬州: 0.6 %拉萨: 0.1 %拉萨: 0.1 %日喀则: 0.2 %日喀则: 0.2 %昆明: 0.4 %昆明: 0.4 %朝阳: 0.1 %朝阳: 0.1 %来宾: 0.2 %来宾: 0.2 %杭州: 1.0 %杭州: 1.0 %松原: 0.1 %松原: 0.1 %林芝: 0.1 %林芝: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 2.1 %武汉: 2.1 %沈阳: 0.7 %沈阳: 0.7 %洛杉矶: 0.3 %洛杉矶: 0.3 %洛阳: 0.4 %洛阳: 0.4 %济南: 0.8 %济南: 0.8 %济宁: 0.2 %济宁: 0.2 %淄博: 0.3 %淄博: 0.3 %淮南: 0.2 %淮南: 0.2 %淮安: 0.2 %淮安: 0.2 %深圳: 0.1 %深圳: 0.1 %温州: 0.3 %温州: 0.3 %湘潭: 0.3 %湘潭: 0.3 %漯河: 0.8 %漯河: 0.8 %漳州: 0.1 %漳州: 0.1 %焦作: 0.1 %焦作: 0.1 %甘孜: 0.3 %甘孜: 0.3 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.8 %秦皇岛: 0.8 %美国加利福尼亚洛杉矶: 0.1 %美国加利福尼亚洛杉矶: 0.1 %肇庆: 0.1 %肇庆: 0.1 %芒廷维尤: 17.8 %芒廷维尤: 17.8 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.1 %苏州: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 23.8 %西宁: 23.8 %西安: 2.7 %西安: 2.7 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.4 %赣州: 0.4 %辽源: 0.1 %辽源: 0.1 %达州: 0.3 %达州: 0.3 %运城: 0.5 %运城: 0.5 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %长春: 0.7 %长春: 0.7 %长沙: 3.4 %长沙: 3.4 %阿德莱德: 0.2 %阿德莱德: 0.2 %青岛: 1.1 %青岛: 1.1 %香港: 0.2 %香港: 0.2 %黄冈: 0.3 %黄冈: 0.3 %黄石: 0.3 %黄石: 0.3 %其他其他AbseconBan BoChinaMalaysiaNepal[]上海东京东莞临汾丽水佛山俄罗斯伏尔加格勒北京十堰南京南通厦门合肥周口呼和浩特哈尔滨哥伦布大庆大连天津太原宁波宜宾宣城山景城崇左广安广州延安张家口徐州成都扬州拉萨日喀则昆明朝阳来宾杭州松原林芝格兰特县桂林武汉沈阳洛杉矶洛阳济南济宁淄博淮南淮安深圳温州湘潭漯河漳州焦作甘孜石家庄福州秦皇岛美国加利福尼亚洛杉矶肇庆芒廷维尤芝加哥苏州葫芦岛衡阳西宁西安贵阳赣州辽源达州运城邢台邯郸郑州重庆长春长沙阿德莱德青岛香港黄冈黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(885) PDF downloads(104) Cited by(28)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return