• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Ping, GAO Tianci, WANG Xin, YANG Cuiping, WANG Yuan. Smoothness Estimation of Super-large Bridges in Railway Line Based on Fitting Railway Plane and Profile[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 231-237, 272. doi: 10.3969/j.issn.0258-2724.20180295
Citation: WU Bo, WANG Qi, LIAO Haili, LI Yulin. Direct Identification of Coefficients of Rational Function Approximation for Self-Excited Aerodynamic Forces[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 247-255. doi: 10.3969/j.issn.0258-2724.20180593

Direct Identification of Coefficients of Rational Function Approximation for Self-Excited Aerodynamic Forces

doi: 10.3969/j.issn.0258-2724.20180593
  • Received Date: 15 Jul 2018
  • Rev Recd Date: 16 Oct 2018
  • Available Online: 24 Dec 2018
  • Publish Date: 01 Apr 2020
  • The identification of coefficients of a rational function is the precondition for flutter analysis of long-span bridges based on rational function approximation. The number of lag terms of rational functions has a large influence on the identification accuracy. The coefficient identification of rational function approximation in existing methods are generally based on one lag term, which easily causes distortion problems in both aerodynamic description and coefficients and thus further affects the accuracy of flutter predictions. This paper proposes a direct identification algorithm of rational function coefficients by considering multiple lag terms, according to the principle that the self-excited aerodynamic force of sinusoidal signals is equal to the rational function in time domain and using the least square fitting method.. Then, the forced vibration test of a thin flat plate with harmonic vibration is carried out to characterize the self-excited forces, and the proposed algorithm is used to identify the coefficients of the rational function with different number of lag terms. Influences of the number of lag terms on the accuracy of self-excited aerodynamic force reconstruction and critical flutter wind speed calculation are analyzed. The accuracy of the algorithm is validated by comparing the critical wind speeds obtained from free vibration wind tunnel tests with those from flutter analysis using the identified coefficients. Results show that the calculated values of critical flutter wind speeds are in good agreement with the tested values, which verifies the effectiveness and accuracy of the proposed algorithm. Compared with the existing identification methods of rational function coefficients, the proposed identification method takes both efficiency and accuracy into account, and can be widely used in coefficient identification of rational function approximation for self-excited forces of bridge girders.

     

  • SCANLAN R H, TOMKO J J. Airfoil and bridge deck flutter derivatives[J]. Journal of Engineering Mechanics, 1971, 97(6): 1717-1737.
    LI Q C, LIN Y K. New stochastic theory for bridge stability in turbulent flow[J]. Journal of Engineering Mechanics, 1995, 121(1): 102-116. doi: 10.1061/(ASCE)0733-9399(1995)121:1(102)
    KARPEL M. Design for active flutter suppression and gust alleviation using state-space aero-elastic modeling[J]. Journal of Aircraft, 1982, 19(3): 221-227. doi: 10.2514/3.57379
    KARPEL M. Minimum-state unsteady aerodynamic approximations with flexible constraints[J]. Journal of Aircraft, 1996, 33(6): 1190-1196.
    SCANLAN R H. Motion-related body force function in two-dimensional low speed flow[J]. Journal of Fluids and Structures, 2000, 14(1): 49-63. doi: 10.1006/jfls.1999.0252
    COSTA C, BORRI C. Application of indicial function in bridge deck aeroelasticity[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(11): 859-881. doi: 10.1016/j.jweia.2006.06.007
    XIE J. CVR method for identification of non-steady aerodynamic model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 29: 389-397. doi: 10.1016/0167-6105(88)90177-8
    谢霁明. 识别非定常气动力模型的初脉冲耦合振动法[J]. 空气动力学学报,1986,4(3): 258-268.

    XIE Jiming. CVR Method for identification of nonsteady aerodynamic model[J]. ACTA Aerodynamic Sinica, 1986, 4(3): 258-268.
    谢霁明,项海帆. 桥梁三维颤振分析的状态空间法[J]. 同济大学学报,1985(3): 1-13.

    XIE Jiming, XIANG Haifan. A state-space method for 3-D flutter analysis of bridge structures[J]. Journal of Tongji University, 1985(3): 1-13.
    CHEN X, MATSUMOTO M, AHSAN K. Time domain flutter and buffeting response analysis of bridges[J]. Journal of Engineering Mechanics, 2000, 126(1): 7-16. doi: 10.1061/(ASCE)0733-9399(2000)126:1(7)
    CHEN X, MATSUMOTO M, KAREEM A. Aerodynamic coupling effects on flutter and buffeting of bridges[J]. Journal of Engineering Mechanics, 2000, 126(1): 17-26. doi: 10.1061/(ASCE)0733-9399(2000)126:1(17)
    郭增伟,葛耀君. 桥梁自激力的状态空间模型的时频特性[J]. 振动工程学报,2013,26(2): 199-206. doi: 10.3969/j.issn.1004-4523.2013.02.007

    GUO Zengwei, GE Yaojun. Time and frequency response characteristics of self-exited force of bridge in state space domain[J]. Journal of Vibration Engineering, 2013, 26(2): 199-206. doi: 10.3969/j.issn.1004-4523.2013.02.007
    张志田,胡海波,陈政清. 桥梁自激气动力阶跃函数及时域颤振的数值算法[J]. 土木工程学报,2011,44(2): 99-107.

    ZHANG Zhitian, HU Haibo, CHEN Zhengqing. Bridge indicial functions for self-excited aerodynamic forces and numerical algorithm for time domain flutter[J]. China Civil Engineering Journal, 2011, 44(2): 99-107.
    张志田,陈政清,李春光. 桥梁自激气动力时域表达式的瞬态与极限特性[J]. 工程力学,2011,28(2): 75-85.

    ZHANG Zhitian, CHEN Zhengqing, LI Chunguang. Limiting and transient characteristics of time domain expressions for bridge self-excited aerodynamic forces[J]. Engineering Mechanics, 2011, 28(2): 75-85.
    WILDE K, FUJINO Y. Aerodynamic control of bridge deck flutter by active surfaces[J]. Journal of Engineering Mechanics, 1998, 124(7): 718-727. doi: 10.1061/(ASCE)0733-9399(1998)124:7(718)
    熊龙,廖海黎,马存明,等. 静风效应对千米级悬索桥颤振的影响[J]. 华中科技大学学报(自然科学版),2016,44(12): 44-49.

    XIONG Long, LIAO Haili, MA Cunming, et al. Study on aerostatic effects on flutter of kilometer level suspension bridge[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2016, 44(12): 44-49.
    王骑,廖海黎,李明水,等. 桥梁断面非线性自激气动力经验模型[J]. 西南交通大学学报,2013,48(2): 271-277. doi: 10.3969/j.issn.0258-2724.2013.02.013

    WANG Qi, LIAO Haili, LI Mingshui, et al. Empirical mathematical model for nonlinear motion-induced aerodynamic force of bidge girder[J]. Journal of Southwest Jiaotong University, 2013, 48(2): 271-277. doi: 10.3969/j.issn.0258-2724.2013.02.013
    CHOWDHURY A G, SARKAR P P. Experimental identification of rational function coefficients for time-domain flutter analysis[J]. Engineering Structures, 2005, 27(9): 1349-1364. doi: 10.1016/j.engstruct.2005.02.019
    CAO B, SARKAR P P. Identification of rational functions using two-degree-of-freedom model by forced vibration method[J]. Engineering Structures, 2012, 43: 21-30. doi: 10.1016/j.engstruct.2012.05.003
    SIEDZIAKO B, OISETH O. An enhanced identification procedure to determine the rational functions and aerodynamic derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamic, 2018, 176: 131-142. doi: 10.1016/j.jweia.2018.03.025
    李明水. 连续大气湍流中大跨度桥梁的抖振响应[D]. 成都: 西南交通大学, 1993.
  • Relative Articles

    [1]JIA Chaojun, CHEN Fanlei, LEI Mingfeng, HUANG Juan, SHI Chenghua, LIU Di. Determination Method of Rock Strength Based on Digital Drilling Parameters[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230328
    [2]HOU Chao, JIN Xiaoguang, HE Jie, FANG Zhiyuan. Freeze-Thaw Damage Characteristics of Anhydrite Rock Pore Structures Based on Nuclear Magnetic Resonance Technology[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230314
    [3]LIANG Jiguan, HUANG Linchong, MA Jianjun, CHEN Wanxian. Comparison of Stress-Dilatancy Rules and Research on Stress-Dilatancy Rule for Rocks[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230231
    [4]WU Hainan, XIE Qiang, LI Yue, WU Minger, YAN Cong. Theoretical Analysis and Experimental Study of T-Shaped Retrofitting Schemes of Diagonal Members for Transmission Towers[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240435
    [5]LI Yue, XIE Qiang, ZHANG Xin, ZHANG Jian. Cascading Failure Analysis of Transmission Tower–Line System Under Strong Wind[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 423-430. doi: 10.3969/j.issn.0258-2724.20220619
    [6]LI Jin, SHI Yuefeng, XIAO Xin, LOU Liangwei, CAI Degou, XIAO Feipeng. Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 281-288. doi: 10.3969/j.issn.0258-2724.20220335
    [7]LIN Pengzhen, WEI Yapeng, QIAO Yewei. Interfacial Stress and Failure Criteria of Steel Structure Coatings Under Wind-Sand Erosion[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 236-243. doi: 10.3969/j.issn.0258-2724.20210189
    [8]FENG Bo, LIU Qing, QIAN Yongjiu. Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089. doi: 10.3969/j.issn.0258-2724.20220035
    [9]WANG Zhaonan, ZHANG Yuanhai. Distortion Effect of Single Box Double-Cell Box Girders with Rectangular Cross Section[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1122-1129. doi: 10.3969/j.issn.0258-2724.20200813
    [10]LIU Youneng, HUANG Runqiu, LIU Enlong, LIAO Mengke. Influence of Freezing-Thawing Cycles on Mechanical Properties of Tailing Soil at Yunnan-Guizhou Plateau[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1052-1059. doi: 10.3969/j.issn.0258-2724.20180520
    [11]YAN Qixiang, LI Binjia, CHEN Hang, ZHANG Weilie, DENG Zhixin. Failure and Parametric Analysis of Shield Tunnel Bolts under Impact Load[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 23-31, 38. doi: 10.3969/j.issn.0258-2724.20160637
    [12]LIAO Ping, XIAO Lin, WEI Xing, ZHAO Renda, TANG Jishun. Fatigue Life Prediction and Parameter Analysis of Girder New Detail[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 639-644. doi: 10.3969/j.issn.0258-2724.2016.04.006
    [13]XU Jiang, LI Shuchun, LIU Yanbao, LI Kegang. Damage Constitutive Model of Rock Based on Drucker-Prager Criterion[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 278-282.
    [14]ZHENG Jia-shu, YUZhi-xiang. Analysis of Modal Properties of Cable-Net Structures[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 58-63.
    [15]FAN Li-li, WUNa, MA Yue. Parameter Analyses in the Model of Profit Sharing and Valuation of Technical Assets[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 693-697.
    [16]FengXingqiao, Cao Fuen. Brazil Test of Rocks with Bearing Plates of Press[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 337-342.
    [17]Jiang Chongx, Xie Qian. Real-Time Observation and Analysis of Meso-Fracture Behavior of Marble Samples[J]. Journal of Southwest Jiaotong University, 1999, 12(1): 89-92.
  • Cited by

    Periodical cited type(8)

    1. 严先萃,陈文,蔡镇羽,高帅,马天宇,刘向阳. 疲劳混凝土硫酸盐侵蚀抗压强度演化规律及预测模型. 常州大学学报(自然科学版). 2025(01): 68-75+92 .
    2. 李振中,马晨,龚博,李辉,皮振宇,徐名凤,周健. 高抗折矿渣硫铝酸盐水泥混凝土抗疲劳性能研究. 市政技术. 2024(03): 164-170+205 .
    3. 程思嫄,陈代果,古巍. 氧化石墨烯改性水泥基注浆材料的制备及力学性能研究. 功能材料. 2023(02): 2153-2158 .
    4. 蒋明慧,刘贵文,薛暄译. 聚丙烯纤维混凝土在腐蚀-疲劳耦合作用下耐久性性能试验分析. 混凝土. 2023(03): 163-165+170 .
    5. 胡晴,焦北辰. 硅酸盐水泥混凝土路面结构设计. 交通世界. 2023(34): 81-83 .
    6. 游帆,念梦飞,郑建岚,罗素蓉. 再生骨料混凝土弯曲疲劳性能研究. 建筑结构学报. 2022(04): 134-141 .
    7. 赵国良,董成,王雷. 荷载多变的混凝土弯曲疲劳数值仿真. 计算机仿真. 2022(09): 343-347+414 .
    8. 杜敏,武亮,张建铭. 长龄期中低热混凝土断裂性能试验研究. 混凝土. 2021(01): 57-60 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.3 %FULLTEXT: 24.3 %META: 70.1 %META: 70.1 %PDF: 5.7 %PDF: 5.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.8 %其他: 8.8 %其他: 0.1 %其他: 0.1 %Pathum Thani: 0.6 %Pathum Thani: 0.6 %上海: 1.8 %上海: 1.8 %上饶: 0.4 %上饶: 0.4 %东莞: 0.3 %东莞: 0.3 %临汾: 0.1 %临汾: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 10.9 %北京: 10.9 %十堰: 1.3 %十堰: 1.3 %南京: 1.3 %南京: 1.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.6 %哥伦布: 0.6 %嘉兴: 0.3 %嘉兴: 0.3 %大庆: 0.1 %大庆: 0.1 %天津: 2.1 %天津: 2.1 %安康: 0.4 %安康: 0.4 %宣城: 0.6 %宣城: 0.6 %常德: 0.1 %常德: 0.1 %平顶山: 0.3 %平顶山: 0.3 %张家口: 2.8 %张家口: 2.8 %徐州: 0.3 %徐州: 0.3 %成都: 2.1 %成都: 2.1 %扬州: 1.2 %扬州: 1.2 %昆明: 0.6 %昆明: 0.6 %曼谷: 0.1 %曼谷: 0.1 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.7 %杭州: 0.7 %松原: 0.1 %松原: 0.1 %武汉: 0.9 %武汉: 0.9 %江门: 0.1 %江门: 0.1 %池州: 1.2 %池州: 1.2 %沈阳: 0.4 %沈阳: 0.4 %洛阳: 0.4 %洛阳: 0.4 %济宁: 0.3 %济宁: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.7 %温州: 0.7 %港区: 0.4 %港区: 0.4 %漯河: 3.6 %漯河: 3.6 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %石家庄: 1.9 %石家庄: 1.9 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 9.0 %芒廷维尤: 9.0 %芝加哥: 1.6 %芝加哥: 1.6 %衡水: 0.1 %衡水: 0.1 %西宁: 28.9 %西宁: 28.9 %西安: 1.2 %西安: 1.2 %西雅图: 0.3 %西雅图: 0.3 %诺沃克: 0.7 %诺沃克: 0.7 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.7 %运城: 0.7 %郑州: 1.6 %郑州: 1.6 %重庆: 0.3 %重庆: 0.3 %长沙: 3.1 %长沙: 3.1 %青岛: 0.9 %青岛: 0.9 %鞍山: 0.3 %鞍山: 0.3 %其他其他Pathum Thani上海上饶东莞临汾兰州北京十堰南京哈尔滨哥伦布嘉兴大庆天津安康宣城常德平顶山张家口徐州成都扬州昆明曼谷朝阳杭州松原武汉江门池州沈阳洛阳济宁深圳温州港区漯河烟台焦作石家庄秦皇岛绵阳芒廷维尤芝加哥衡水西宁西安西雅图诺沃克贵阳运城郑州重庆长沙青岛鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article views(628) PDF downloads(27) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return