• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LI Jie, PENG Qiyuan, YANG Yuxiang. Passenger Flow Prediction for Guangzhou-Zhuhai Intercity Railway Based on SARIMA Model[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 41-51. doi: 10.3969/j.issn.0258-2724.20180617
Citation: LI Jie, PENG Qiyuan, YANG Yuxiang. Passenger Flow Prediction for Guangzhou-Zhuhai Intercity Railway Based on SARIMA Model[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 41-51. doi: 10.3969/j.issn.0258-2724.20180617

Passenger Flow Prediction for Guangzhou-Zhuhai Intercity Railway Based on SARIMA Model

doi: 10.3969/j.issn.0258-2724.20180617
  • Received Date: 10 Aug 2018
  • Rev Recd Date: 10 Nov 2018
  • Available Online: 27 Nov 2019
  • Publish Date: 01 Feb 2020
  • To achieve the short-term prediction on the railway passenger flow and analyze the influence of prediction step on prediction accuracy, firstly, the characteristics and variation of passenger flow for Guangzhou-Zhuhai intercity railway were analyzed. Then, considering the passenger flow characteristics, a prediction model based on the seasonal autoregressive integrated moving average (SARIMA) was built with the Statsmodels module in Python. Next, the model performance was validated on different prediction steps. The conclusion shows that when the prediction step is 1, the mean absolute percentage error (MAPE) for Guangzhou South station, Xiaolan station and Zhuhai station is 3.97%, 5.83%, and 5.43%, respectively; when the prediction step increases to 2, the MAPE shows an increase trend, which is 5.31%, 6.79%, and 7.62% for Guangzhou South station, Xiaolan station and Zhuhai station, respectively; when the prediction step exceeds 2, the MAPE is stable. In addition, comparative results with other passenger flow prediction methods, i.e., random forest (RF), support vector machine (SVM), gradient boosting (GB), and K-nearest neighbor (KNN) demonstrate that when the prediction step is 1, the SARIMA model performs slightly better; when the prediction step exceeds 2, the MAPE of RF, SVM, GB, and KNN increases dramatically, amounting several times that of the SARIMA model. Finally, the experiment results show that the SARIMA model can achieve a better performance than other models in terms of the multi-step prediction for passenger flow time series.

     

  • PENGPENG J, RUIMIN L, TUO S, et al. Three revised Kalman filtering models for short-term rail transit passenger flow prediction[J]. Mathematical Problems in Engineering, 2016, 795: 1-10.
    李夏苗,黄桂章,汤杰. 基于OD反推模型预测客运通道客流量[J]. 铁道学报,2008,30(6): 7-12. doi: 10.3321/j.issn:1001-8360.2008.06.002

    LI Xiamiao, HUANG Guizhang, TANG Jie. Passenger flow forecasting based on OD-matrix estimation model[J]. Journal of the China Railway Society, 2008, 30(6): 7-12. doi: 10.3321/j.issn:1001-8360.2008.06.002
    朱子虎,翁振松. 基于混沌理论的铁路客货运量预测研究[J]. 铁道学报,2011,33(6): 5-11. doi: 10.3969/j.issn.1001-8360.2011.06.001

    ZHU Zihu, WENG Zhensong. Railway passenger and freight volume forecasting based on chaos theory[J]. Journal of the China Railway Society, 2011, 33(6): 5-11. doi: 10.3969/j.issn.1001-8360.2011.06.001
    刘琳玥. 基于PCA-BP神经网络的铁路客运量预测模型研究[J]. 综合运输,2016(8): 43-47.

    LIU Linyue. Research of railway passenger volume forecast model based on PCA-BP neural network[J]. China Transportation Review, 2016(8): 43-47.
    WANG Y, ZHENG D, LUO S M, et al. The research of railway passenger flow prediction model based on BP neural network[J]. Advanced Materials Research, 2013, 605: 2366-2369.
    TSAI T H, LEE C K, WEI C H. Neural network based temporal feature models for short-term railway passenger demand forecasting[J]. Expert Systems with Applications, 2009, 36(2): 3728-373. doi: 10.1016/j.eswa.2008.02.071
    李立. 济南至青岛高速铁路客运量预测研究[J]. 铁道运输与经济,2016,38(9): 45-49.

    LI Li. Traffic volume forecast for Ji’nan-Qingdao high-speed railway[J]. Railway Transport and Economy, 2016, 38(9): 45-49.
    JIANG X, ZHANG L, CHEN X. Short-term forecasting of high-speed rail demand:a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China[J]. Transportation Research, Part C, 2014, 44(4): 110-127.
    王莹,韩宝明,张琦,等. 基于SARIMA模型的北京地铁进站客流量预测[J]. 交通运输系统工程与信息,2015,15(6): 205-211. doi: 10.3969/j.issn.1009-6744.2015.06.031

    WANG Ying, HAN Baoming, ZAHNG Qi, et al. Forecasting of entering passenger flow volume in Beijing subway based on SARIMA model[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(6): 205-211. doi: 10.3969/j.issn.1009-6744.2015.06.031
    何九冉,四兵锋. ARIMA-RBF模型在城市轨道交通客流预测中的应用[J]. 山东科学,2013,26(3): 75-81.

    HE Jiuran, SI Bingfeng. Application of an ARIMA-RBF model in the forecast of urban rail traffic volume[J]. Shandong Science, 2013, 26(3): 75-81.
    成诚,杜豫川,刘新. 考虑节假日效应的交通枢纽客流量预测模型[J]. 交通运输系统工程与信息,2015,15(5): 202-207. doi: 10.3969/j.issn.1009-6744.2015.05.029

    CHENG Cheng, DU Yuchuan, LIU Xin. A passenger volume prediction model of transportation hub considering holiday effects[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5): 202-207. doi: 10.3969/j.issn.1009-6744.2015.05.029
    白丽. 城市轨道交通常态与非常态短期客流预测方法研究[J]. 交通运输系统工程与信息,2016,17(1): 127-135.

    BAI Li. Urban rail transit normal and abnormal short-term passenger flow forecasting method[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 17(1): 127-135.
    孙湘海,刘潭秋. 基于神经网络和SARIMA组合模型的短期交通流预测[J]. 交通运输系统工程与信息,2008,8(5): 32-37. doi: 10.3969/j.issn.1009-6744.2008.05.006

    SUN Xianghai, LIU Tanqiu. Short-term traffic flow forecasting based on a hybrid neural network model and SARIMA model[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(5): 32-37. doi: 10.3969/j.issn.1009-6744.2008.05.006
    蔡昌俊,姚恩建,王梅英,等. 基于乘积ARIMA模型的城市轨道交通进出站客流量预测[J]. 北京交通大学学报,2014,38(2): 135-140. doi: 10.11860/j.issn.1673-0291.2014.04.24

    CAI Changjun, YAO Enjian, WANG Meiying, et al. Prediction of urban railway station’s entrance and exit passenger flow based on multiply ARIMA model[J]. Journal of Beijing Jiaotong University, 2014, 38(2): 135-140. doi: 10.11860/j.issn.1673-0291.2014.04.24
    JIA Y, HE P, LIU S, et al. A combined forecasting model for passenger flow based on GM and ARMA[J]. International Journal of Hybrid Information Technology, 2016, 9(2): 215-226. doi: 10.14257/ijhit.2016.9.2.19
    王燕. 应用时间序列分析[M]. 中国人民大学出版社, 2005: 65-66.
  • Relative Articles

    [1]ZHAO Tianyin, ZHANG Yongxiang, WANG Wei, PENG Qiyuan, GUO Jingwei. Optimization Model and Algorithm of Additional Trains Scheduling in High-Speed Railway Timetables Considering Passenger Demand[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 741-751. doi: 10.3969/j.issn.0258-2724.20240637
    [2]XUE Feng, LIU Yongbo, HU Zuoan, CHEN Yifei. Railcar Traffic Distribution and Route Optimization Model Based on Dynamic Penalty Function[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 941-948, 959. doi: 10.3969/j.issn.0258-2724.20210226
    [3]LI Fang, DI Yue, CHEN Shaokuan, JIA Wenzheng. Modelling Passenger Evacuation from Metro Platforms Considering Passenger Flow Guidance and Small Group Behaviour[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 587-594. doi: 10.3969/j.issn.0258-2724.20170668
    [4]YAN Jian, HE Chuan, WANG Bo, MENG Wei, YANG Junfeng. Prediction of Rock Bursts for Sangzhuling Tunnel Located on Lhasa-Nyingchi Railway Under Coupled Thermo-Mechanical Effects[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 434-441. doi: 10.3969/j.issn.0258-2724.2018.03.002
    [5]PENG Qiyuan, LI Jianguan, YANG Yuxiang, WEN Chao. Influences of High-Speed Railway Construction on Railway Transportation of China[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 525-533. doi: 10.3969/j.issn.0258-2724.2016.03.011
    [6]ZHANG Xiaobing, NI Shaoquan, PAN Jinshan. Optimization of Train Diagram Structure for High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 938-943. doi: 10.3969/j.issn.0258-2724.2016.05.017
    [7]LI Xin, SHANG Tao, ZHOU Wei. Evaluation of Coordination between Railway Transportation and Open-Pit Mining Based on Efficacy and Coupling[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 490-494. doi: 10.3969/j.issn.0258-2724.2012.03.022
    [8]PENG Qiyuan, WEN Chao, YAN Haifeng. Driving Effects of Speed Increase on Development of Railway Transportation in China[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 685-691.
    [9]WANG Ruyi, WANG Ciguang, GUO Zizheng, TANG Jianqiao. Forecast of Railway Freight Ton-Kilometers Based on Semi-parametric Regression[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 96-100.
    [10]MAGuo-zhong, LIUQing-wei, WANG Ci-guang. Evaluation and Enhancement ofTransportCapacity of Railway System in BAOSTEEL[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 366-370.
    [11]PENG Qi-yuan, YIN Yong, YANHai-feng. M odel ofRailway Transportation Channel Share Based on Finished Dedicated Passenger Line[J]. Journal of Southwest Jiaotong University, 2005, 18(6): 788-792.
    [12]WANG Wei, YAN Yu-son, WANG Yong, ZHAONan. Optimal Approval Model for Wagon Requisition in Railway Bureaus[J]. Journal of Southwest Jiaotong University, 2004, 17(5): 581-584.
    [13]MAO Min, ZHANGJin, ZHOUHou-wen. Passenger Volume Forecasting of Guangzhou-Zhuhai Intercity Rapid Mass Transit[J]. Journal of Southwest Jiaotong University, 2004, 17(2): 195-198.
    [14]ZHAODONG-mei, ZHANGJIAN-yong. TheRationalScaieofHu幻以anResourcesfor theRailwayTransPortationIndustryinChina[J]. Journal of Southwest Jiaotong University, 2001, 14(4): 412-415.
    [15]JIANGNan, TANZhong-ping, HEFu. A Study on Correlation Searching System for the Laws and Regulations in Railway Transportation[J]. Journal of Southwest Jiaotong University, 2000, 13(4): 413-416.
    [16]DUWen, RENMin. Some of Thinking for Reforming Railway Transport Products Statistics[J]. Journal of Southwest Jiaotong University, 2000, 13(3): 246-249.
    [17]LI Zong-ping, LIUHai-yan, DUWen. On the Model for Production Optimal Decision of Railway Transport Products[J]. Journal of Southwest Jiaotong University, 2000, 13(3): 242-245.
  • Cited by

    Periodical cited type(32)

    1. 姚进强,孙超,孟少寅,陈天怡,张永捷,张子彦. 基于LSTM-Attention的高速公路短时速度预测方法研究. 交通与运输. 2025(01): 55-60 .
    2. 连莲,穆雅伟,宗学军,何戡,商家硕. 基于改进粒子群优化算法优化LSTM-AM的公交客流量预测. 控制工程. 2025(02): 216-225 .
    3. 师蔚,范乔,杨洋,胡定玉,廖爱华. 基于SARIMA和SVR组合模型的转向架系统寿命评估. 铁道机车车辆. 2024(01): 157-163 .
    4. 蒋鑫平,王启猛,刘猛,王发信,吕海深,陈雨,李杰,王振龙. 基于SARIMA模型的五道沟地区0~320 cm土层季尺度地温预测研究. 灌溉排水学报. 2024(02): 54-60+95 .
    5. 范棪堃. 基于SARIMA模型的上海市中心城区共享单车需求预测. 信息与电脑(理论版). 2024(05): 210-214 .
    6. 任琦璇. 铁路车站客流量波动规律与预测方法探讨. 铁道经济研究. 2024(04): 72-79 .
    7. 吕锋,王保森,褚慧利,杨城,吕玲. 基于SARIMA-改进RS-多步LSTM的农机装备需求组合预测模型. 中国农机化学报. 2024(12): 305-311 .
    8. 田勇,董斌,于楠,孙梦圆,李千千,郭梁. 基于SARIMA-LSTM模型的航空旅客运输市场需求分析与预测. 指挥信息系统与技术. 2024(05): 1-8 .
    9. 赵靳辉,刘斌,田志强,武万鹏. 基于CNN-Bi-LSTM网络的城轨短时客流预测. 兰州交通大学学报. 2024(06): 130-137 .
    10. 沈扬,沈泓. 基于SARIMA和LSSVM的超短期光伏出力预测方法. 南京工程学院学报(自然科学版). 2024(03): 57-63 .
    11. 李修安,张勇. 基于Prophet算法的短期轨道交通线网客流预测研究. 物流工程与管理. 2023(02): 87-90 .
    12. 徐慧智,杨冰冰. 基于CNN-LSTM组合模型的铁路枢纽站出租车需求量短时预测研究. 大连交通大学学报. 2023(01): 58-63 .
    13. 夏英,刘敏. 基于时空注意力卷积神经网络的交通流量预测. 西南交通大学学报. 2023(02): 340-347 . 本站查看
    14. 苏焕银,彭舒婷,曾琼芳,代慧子. 基于VMD-LSTM混合模型的城际高速铁路时变客流预测. 铁道科学与工程学报. 2023(04): 1200-1210 .
    15. 王建圣,李骞. 基于GM(1, 1)–SARIMA组合模型的铁路客运量预测研究. 建筑技术开发. 2023(09): 65-68 .
    16. 刘正琦,王小敏. 基于多源数据与粒子滤波的城轨断面客流预测. 铁道标准设计. 2023(12): 15-20+29 .
    17. 张思琪,门惠雯,朱晓慧,郝朝晖. 双减政策下基于SARIMA的搜题软件发展研究. 科技创业月刊. 2023(S1): 12-16 .
    18. 张国赟,金辉. 基于改进ARIMA模型的城市轨道交通短时客流预测研究. 计算机应用与软件. 2022(01): 339-344 .
    19. 肖尧,刘斌,杨浩. 铁路客运需求分析与短期客流预测. 科学技术与工程. 2022(09): 3727-3734 .
    20. 李炜聪,潘福全,胡盼,张丽霞,杨晓霞,杨金顺. 基于季节性差分整合移动平均自回归模型的城市公交短期客流预测. 济南大学学报(自然科学版). 2022(03): 308-314 .
    21. 赵明伟,张文胜,王克文,李红. 基于EMD-PSO-LSTM组合模型的城市轨道交通短时客流预测. 铁道运输与经济. 2022(07): 110-118 .
    22. 张亚伟,陈瑞凤,刘小燕. 基于门控循环神经网络的客运站客流预测. 铁道运输与经济. 2022(09): 96-102 .
    23. 邵必林,饶媛,何欣. 基于SARIMA-SVM组合模型的地铁客流量预测研究. 软件导刊. 2022(11): 24-30 .
    24. 聂巧平,孙淇铭. 时间序列模型的Ljung-Box检验的发展与应用综述. 统计与管理. 2022(04): 101-107 .
    25. 秦利南,董路熙. 城市轨道交通客流预测算法研究. 交通工程. 2021(01): 40-47 .
    26. 刘新杰,刘明敏,丁晨滋. 基于空间分类的铁路枢纽客运需求预测方法. 交通工程. 2021(02): 85-90+96 .
    27. 郭永保. 深圳至大亚湾城际铁路互联互通布局优化研究. 铁道标准设计. 2021(05): 7-14 .
    28. 李和壁,梁家健,高扬. 基于MLPs-dynFWA模型的高速铁路短时客流预测方法研究. 铁道运输与经济. 2021(06): 28-36 .
    29. 黄海超,陈景雅,王爽,王方伟. 多因素轨道交通客流量预测模型研究. 华东交通大学学报. 2021(03): 61-66 .
    30. 宗君振. 基于BP神经网络的城市轨道交通客流预测研究. 西部交通科技. 2021(09): 163-164+168 .
    31. 强添纲,刘涛,裴玉龙. 地铁进站客流量SARIMA与GA-BP神经网络组合预测模型. 铁道运输与经济. 2021(12): 134-142 .
    32. 林少毅. 基于决策树算法的广州南至珠海旅客发送量预测. 电子技术与软件工程. 2020(15): 189-190 .

    Other cited types(48)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 38.8 %FULLTEXT: 38.8 %META: 54.3 %META: 54.3 %PDF: 6.9 %PDF: 6.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.8 %其他: 11.8 %其他: 0.8 %其他: 0.8 %Hyōgo: 0.1 %Hyōgo: 0.1 %上海: 2.6 %上海: 2.6 %东莞: 0.7 %东莞: 0.7 %临汾: 0.2 %临汾: 0.2 %乐山: 1.1 %乐山: 1.1 %佛山: 0.1 %佛山: 0.1 %兰州: 0.5 %兰州: 0.5 %内江: 0.4 %内江: 0.4 %北京: 4.4 %北京: 4.4 %十堰: 0.1 %十堰: 0.1 %南京: 2.3 %南京: 2.3 %南宁: 0.2 %南宁: 0.2 %合肥: 0.4 %合肥: 0.4 %咸阳: 0.1 %咸阳: 0.1 %哥伦布: 0.5 %哥伦布: 0.5 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %埃德蒙顿: 0.1 %埃德蒙顿: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.8 %天津: 0.8 %宁德: 0.2 %宁德: 0.2 %宁波: 0.4 %宁波: 0.4 %安康: 0.6 %安康: 0.6 %宜春: 0.1 %宜春: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.4 %广州: 0.4 %延安: 0.1 %延安: 0.1 %张家口: 2.3 %张家口: 2.3 %怀化: 0.2 %怀化: 0.2 %意法半: 0.8 %意法半: 0.8 %成都: 3.2 %成都: 3.2 %扬州: 0.4 %扬州: 0.4 %揭阳: 0.4 %揭阳: 0.4 %昆明: 0.4 %昆明: 0.4 %曲靖: 0.1 %曲靖: 0.1 %杭州: 1.0 %杭州: 1.0 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.1 %桂林: 0.1 %武汉: 0.1 %武汉: 0.1 %江门: 0.5 %江门: 0.5 %沈阳: 0.8 %沈阳: 0.8 %洛阳: 1.1 %洛阳: 1.1 %深圳: 1.6 %深圳: 1.6 %清远: 0.1 %清远: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 1.1 %漯河: 1.1 %澳门: 0.1 %澳门: 0.1 %焦作: 0.2 %焦作: 0.2 %盐城: 0.2 %盐城: 0.2 %石家庄: 5.0 %石家庄: 5.0 %福州: 0.2 %福州: 0.2 %绵阳: 0.2 %绵阳: 0.2 %罗马: 0.2 %罗马: 0.2 %芒廷维尤: 7.7 %芒廷维尤: 7.7 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.2 %苏州: 0.2 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 26.1 %西宁: 26.1 %西安: 1.3 %西安: 1.3 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.6 %运城: 0.6 %邯郸: 0.1 %邯郸: 0.1 %郑州: 3.2 %郑州: 3.2 %重庆: 1.2 %重庆: 1.2 %长春: 0.2 %长春: 0.2 %长沙: 4.3 %长沙: 4.3 %阳泉: 0.2 %阳泉: 0.2 %青岛: 1.1 %青岛: 1.1 %驻马店: 0.1 %驻马店: 0.1 %黄石: 0.2 %黄石: 0.2 %其他其他Hyōgo上海东莞临汾乐山佛山兰州内江北京十堰南京南宁合肥咸阳哥伦布唐山嘉兴埃德蒙顿大连天津宁德宁波安康宜春宣城常州平顶山广州延安张家口怀化意法半成都扬州揭阳昆明曲靖杭州格兰特县桂林武汉江门沈阳洛阳深圳清远温州湖州漯河澳门焦作盐城石家庄福州绵阳罗马芒廷维尤芜湖芝加哥苏州衢州襄阳西宁西安贵阳运城邯郸郑州重庆长春长沙阳泉青岛驻马店黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views(841) PDF downloads(71) Cited by(80)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return