• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 55 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
LI Jie, PENG Qiyuan, YANG Yuxiang. Passenger Flow Prediction for Guangzhou-Zhuhai Intercity Railway Based on SARIMA Model[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 41-51. doi: 10.3969/j.issn.0258-2724.20180617
Citation: LI Jie, PENG Qiyuan, YANG Yuxiang. Passenger Flow Prediction for Guangzhou-Zhuhai Intercity Railway Based on SARIMA Model[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 41-51. doi: 10.3969/j.issn.0258-2724.20180617

Passenger Flow Prediction for Guangzhou-Zhuhai Intercity Railway Based on SARIMA Model

doi: 10.3969/j.issn.0258-2724.20180617
  • Received Date: 10 Aug 2018
  • Rev Recd Date: 10 Nov 2018
  • Available Online: 27 Nov 2019
  • Publish Date: 01 Feb 2020
  • To achieve the short-term prediction on the railway passenger flow and analyze the influence of prediction step on prediction accuracy, firstly, the characteristics and variation of passenger flow for Guangzhou-Zhuhai intercity railway were analyzed. Then, considering the passenger flow characteristics, a prediction model based on the seasonal autoregressive integrated moving average (SARIMA) was built with the Statsmodels module in Python. Next, the model performance was validated on different prediction steps. The conclusion shows that when the prediction step is 1, the mean absolute percentage error (MAPE) for Guangzhou South station, Xiaolan station and Zhuhai station is 3.97%, 5.83%, and 5.43%, respectively; when the prediction step increases to 2, the MAPE shows an increase trend, which is 5.31%, 6.79%, and 7.62% for Guangzhou South station, Xiaolan station and Zhuhai station, respectively; when the prediction step exceeds 2, the MAPE is stable. In addition, comparative results with other passenger flow prediction methods, i.e., random forest (RF), support vector machine (SVM), gradient boosting (GB), and K-nearest neighbor (KNN) demonstrate that when the prediction step is 1, the SARIMA model performs slightly better; when the prediction step exceeds 2, the MAPE of RF, SVM, GB, and KNN increases dramatically, amounting several times that of the SARIMA model. Finally, the experiment results show that the SARIMA model can achieve a better performance than other models in terms of the multi-step prediction for passenger flow time series.

     

  • loading
  • PENGPENG J, RUIMIN L, TUO S, et al. Three revised Kalman filtering models for short-term rail transit passenger flow prediction[J]. Mathematical Problems in Engineering, 2016, 795: 1-10.
    李夏苗,黄桂章,汤杰. 基于OD反推模型预测客运通道客流量[J]. 铁道学报,2008,30(6): 7-12. doi: 10.3321/j.issn:1001-8360.2008.06.002

    LI Xiamiao, HUANG Guizhang, TANG Jie. Passenger flow forecasting based on OD-matrix estimation model[J]. Journal of the China Railway Society, 2008, 30(6): 7-12. doi: 10.3321/j.issn:1001-8360.2008.06.002
    朱子虎,翁振松. 基于混沌理论的铁路客货运量预测研究[J]. 铁道学报,2011,33(6): 5-11. doi: 10.3969/j.issn.1001-8360.2011.06.001

    ZHU Zihu, WENG Zhensong. Railway passenger and freight volume forecasting based on chaos theory[J]. Journal of the China Railway Society, 2011, 33(6): 5-11. doi: 10.3969/j.issn.1001-8360.2011.06.001
    刘琳玥. 基于PCA-BP神经网络的铁路客运量预测模型研究[J]. 综合运输,2016(8): 43-47.

    LIU Linyue. Research of railway passenger volume forecast model based on PCA-BP neural network[J]. China Transportation Review, 2016(8): 43-47.
    WANG Y, ZHENG D, LUO S M, et al. The research of railway passenger flow prediction model based on BP neural network[J]. Advanced Materials Research, 2013, 605: 2366-2369.
    TSAI T H, LEE C K, WEI C H. Neural network based temporal feature models for short-term railway passenger demand forecasting[J]. Expert Systems with Applications, 2009, 36(2): 3728-373. doi: 10.1016/j.eswa.2008.02.071
    李立. 济南至青岛高速铁路客运量预测研究[J]. 铁道运输与经济,2016,38(9): 45-49.

    LI Li. Traffic volume forecast for Ji’nan-Qingdao high-speed railway[J]. Railway Transport and Economy, 2016, 38(9): 45-49.
    JIANG X, ZHANG L, CHEN X. Short-term forecasting of high-speed rail demand:a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China[J]. Transportation Research, Part C, 2014, 44(4): 110-127.
    王莹,韩宝明,张琦,等. 基于SARIMA模型的北京地铁进站客流量预测[J]. 交通运输系统工程与信息,2015,15(6): 205-211. doi: 10.3969/j.issn.1009-6744.2015.06.031

    WANG Ying, HAN Baoming, ZAHNG Qi, et al. Forecasting of entering passenger flow volume in Beijing subway based on SARIMA model[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(6): 205-211. doi: 10.3969/j.issn.1009-6744.2015.06.031
    何九冉,四兵锋. ARIMA-RBF模型在城市轨道交通客流预测中的应用[J]. 山东科学,2013,26(3): 75-81.

    HE Jiuran, SI Bingfeng. Application of an ARIMA-RBF model in the forecast of urban rail traffic volume[J]. Shandong Science, 2013, 26(3): 75-81.
    成诚,杜豫川,刘新. 考虑节假日效应的交通枢纽客流量预测模型[J]. 交通运输系统工程与信息,2015,15(5): 202-207. doi: 10.3969/j.issn.1009-6744.2015.05.029

    CHENG Cheng, DU Yuchuan, LIU Xin. A passenger volume prediction model of transportation hub considering holiday effects[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5): 202-207. doi: 10.3969/j.issn.1009-6744.2015.05.029
    白丽. 城市轨道交通常态与非常态短期客流预测方法研究[J]. 交通运输系统工程与信息,2016,17(1): 127-135.

    BAI Li. Urban rail transit normal and abnormal short-term passenger flow forecasting method[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 17(1): 127-135.
    孙湘海,刘潭秋. 基于神经网络和SARIMA组合模型的短期交通流预测[J]. 交通运输系统工程与信息,2008,8(5): 32-37. doi: 10.3969/j.issn.1009-6744.2008.05.006

    SUN Xianghai, LIU Tanqiu. Short-term traffic flow forecasting based on a hybrid neural network model and SARIMA model[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(5): 32-37. doi: 10.3969/j.issn.1009-6744.2008.05.006
    蔡昌俊,姚恩建,王梅英,等. 基于乘积ARIMA模型的城市轨道交通进出站客流量预测[J]. 北京交通大学学报,2014,38(2): 135-140. doi: 10.11860/j.issn.1673-0291.2014.04.24

    CAI Changjun, YAO Enjian, WANG Meiying, et al. Prediction of urban railway station’s entrance and exit passenger flow based on multiply ARIMA model[J]. Journal of Beijing Jiaotong University, 2014, 38(2): 135-140. doi: 10.11860/j.issn.1673-0291.2014.04.24
    JIA Y, HE P, LIU S, et al. A combined forecasting model for passenger flow based on GM and ARMA[J]. International Journal of Hybrid Information Technology, 2016, 9(2): 215-226. doi: 10.14257/ijhit.2016.9.2.19
    王燕. 应用时间序列分析[M]. 中国人民大学出版社, 2005: 65-66.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views(699) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return